Skip to main content
Log in

Microstructure, Texture, and Mechanical Properties of Ti6Al4V Alloy during Uniaxial Tension at Elevated Temperatures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the microstructure, texture and mechanical properties of Ti6Al4V (Ti64) alloy during deformation at low temperatures (i.e., around its service temperature in aerospace applications) have been investigated. The samples were subjected to uniaxial tension at temperatures of 298, 673, and 873 K for different % elongations. Refinement of both α and β grains was observed during deformation at all the studied temperatures. The α-grain refinement was identified to be of continuous dynamic recovery and recrystallization (CDRR) type. It was also found that the Burgers orientation relationship (BOR) between α and β grains refined the β grains, whereas any deviation from the relationship refined the α grains. The basal texture was observed to be tilted about 10-50° away from the normal direction (ND) of the samples after deformation. Stage III hardening was observed in the samples during deformation at all the studied temperatures. Athermal hardening was seen up to 4% deformation of the samples at a temperature of 673 K. Further, the athermal hardening rate was found to be more at 673 K deformation temperature as compared to those at 298 and 873 K due to higher activity of basal slip system at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A., 1996, 213(1–2), p 103–114.

    Article  Google Scholar 

  2. I. Inagaki, T. Takechi, Y. Shirai, and N. Ariyasu, Application and Features of Titanium for the Aerospace Industry, Nippon Steel Sumitomo Metal Technical Rep, 2014, 106, p 22–27.

    Google Scholar 

  3. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, 2003.

    Book  Google Scholar 

  4. E. Do Nascimento Filho, V.A.R. Henriques, J.L. de Oliveira, and E.F. Diniz, Microstructural Study of Ti-6Al-4V Produced with TiH2Powder, SAE Tech. Pap. Ser., (2012), 36, p. 0197

  5. T.H.G. Megson, Aircraft Structures for Engineering Students, Edward Arnold, London, 1972.

    Google Scholar 

  6. D.G.L. Prakash, R. Ding, R.J. Moat, I. Jones, P.J. Withers, J. Quinta, and M. Preuss, Deformation Twinning in Ti-6Al-4V During Low Strain Rate Deformation to Moderate Strains at Room Temperature, Mater. Sci. Eng. A., 2010, 527(21–22), p 5734–5744.

    Article  Google Scholar 

  7. G. Luetjering, Titanium, 2nd eds. (Springer, New York, 2007)

  8. D. Banerjee and J. Williams, Microstructure and slip character in titanium alloys, Def. Sci. J., 1986, 36(2), p 191–206.

    Article  CAS  Google Scholar 

  9. A. Lewis, S. Qidwai, and A. Geltmacher, Slip Systems and Initiation of Plasticity in a Body Centred Cubic Titanium Alloy, Metall. Mater. Trans. A., 2010, 41(10), p 2522–2531.

    Article  Google Scholar 

  10. J. Galan-Lopez, S. Naghdy, P. Verleysen, L. Kestens, F. Coghe, L. Rabet, and J. Degrieck, Mechanical Behavior And Texture Prediction of Ti- 6Al-4V Based on Elastic Viscoplastic Self- Consistent Modelling, in IOP Conference Series: Materials Science and Engineering, vol 82, August 24–29, 2014 (Dresden, Germany, 2015) p. 012027

  11. S.L. Semiatin, V. Seetharaman, and I. Weiss, Flow Behavior and Globularization Kinetics During Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure, Mater. Sci. Eng. A., 1999, 263(2), p 257–271.

    Article  Google Scholar 

  12. S.L. Semiatin and T.R. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow During hot Working of Ti-6Al-4V with a Transformed Microstructure, Acta Mater., 2001, 49(17), p 3565–3573.

    Article  CAS  Google Scholar 

  13. M. Vanderhasten, L. Rabet, and B. Verlinden, Deformation Mechanisms of Ti-6Al-4V During Tensile Behavior at Low Strain Rate, J. Mater. Eng. Perform., 2007, 16, p 208–212.

    Article  CAS  Google Scholar 

  14. H. Matsumoto, T. Nishihara, Y. Iwagaki, T. Shiraishi, and Y. Ono, Microstructural Evolution and Deformation Mode Under High-Temperature-Tensile-Deformation of the Ti-6Al-4V Alloy with the Metastable α′ Martensite Starting Microstructure, Mater. Sci. Eng. A., 2016, 661, p 68–78.

    Article  CAS  Google Scholar 

  15. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Material Modeling Considerations, Mater. Sci. Eng. A., 2000, 284(1–2), p 184–194.

    Article  Google Scholar 

  16. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A., 2002, 325(1–2), p 112–125.

    Article  Google Scholar 

  17. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, and D.L. Chen, Hot Deformation Behavior of Ti-6Al-4V Alloy: Effect of initial Microstructure, J. Alloys Compd., 2017, 718, p 170–181.

    Article  CAS  Google Scholar 

  18. J.L.W. Warwick, N.G. Jones, I. Bantounas, M. Preuss, and D. Dye, In Situ Observation of Texture and Microstructure Evolution during Rolling and Globularization of Ti-6Al-4V, Acta Mater., 2013, 61(5), p 1603–1615.

    Article  CAS  Google Scholar 

  19. B. Perumal, M.A. Rist, S. Gungor, J.W. Brooks, and M.E. Fitzpatrick, The Effect of Hot Deformation Parameters on Microstructure Evolution of the α-Phase in Ti-6Al-4V, Metall. Mater. Trans. A., 2016, 47, p 4128–4136.

    Article  CAS  Google Scholar 

  20. L. Yang and Y. Yang, Deformed Microstructure, and Texture of Ti6Al4V Alloy, Trans. Nonferrous Met. Soc. China., 2014, 24(10), p 3103–3110.

    Article  CAS  Google Scholar 

  21. D.G.L. Prakash, P. Honniball, D. Rugg, P.J. Withers, J. Quinta, and M. Preuss, The Effect of β Phase on Microstructure and Texture Evolution during Thermomechanical Processing of α + β Ti Alloy, Acta Mater., 2013, 61(9), p 3200–3213.

    Article  Google Scholar 

  22. S.V.S.N. Murty, N. Nayan, P. Kumar, P.R. Narayanan, S.C. Sharma, and K.M. George, Microstructure-Texture-Mechanical Properties Relationship in Multi-Pass Warm Rolled Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2014, 589, p 174–181.

    Article  CAS  Google Scholar 

  23. R.K. Sabat, M.V.S.S.D.S.S. Pavan, D.S. Aakash, M. Kumar, and S.K. Sahoo, Mechanism of Texture and Microstructure Evolution During Warm Rolling of Ti-6Al-4V Alloy, Philos. Mag., 2018, 98(28), p 2562–2581.

    Article  CAS  Google Scholar 

  24. H. Jiang, P. Dong, S. Zeng, and B. Wu, Effects of Recrystallization on Microstructure and Texture Evolution of Cold-Rolled Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2016, 25(5), p 1931–1938.

    Article  CAS  Google Scholar 

  25. S. Roy and S. Suwas, Microstructure and Texture Evolution During Sub-Transus Thermomechanical Processing of Ti-6Al-4V-0.1B Alloy: Part I. Hot Rolling in (α+β) Phase Field, Metall. Mater. Trans. A, 2013, 44(7), p 3303–3321.

    Article  CAS  Google Scholar 

  26. X. Ji, B. Guo, F. Jiang, H. Yu, D. Fu, J. Teng, H. Zhang, and J.J. Jonas, Accelerated Flow Softening and Dynamic Transformation of Ti-6Al-4V Alloy in Two-Phase Region During Hot Deformation Via Coarsening α Grain, J. Mater. Sci. Technol., 2020, 36, p 160–166.

    Article  CAS  Google Scholar 

  27. J.S. Jha, S. Dhala, S.P. Toppo, R. Singh, and A. Tewari, Effect of Strain Amplitude on Low Cycle Fatigue and Microstructure Evolution in Ti-6Al-4V: A TKD and TEM Characterization, Mater. Charact., 2019, 155, p 109829.

    Article  CAS  Google Scholar 

  28. S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, and M.J. Mills, Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of α/β Titanium Alloy, Acta Mater., 1999, 47(3), p 1019–1034.

    Article  CAS  Google Scholar 

  29. M.F. Savage, J. Tatalovich, and M.J. Mills, Anisotropy in the Room-Temperature Deformation of α-β Colonies in Titanium Alloys: Role of the α-β Interface, Philos. Mag., 2004, 84(11), p 1127–1154.

    Article  CAS  Google Scholar 

  30. A.D. Rollett, U.F. Kocks, and R.D. Doherthy, Formability and Metallurgical Structure, in: eds. by A.K. Sachdev, J.D. Embury, The Metall. Society, (1987), p. 211

  31. H. Jiang, P. Dong, S. Zeng, and B. Wu, Effects of Recrystallization on Microstructure and Texture Evolution of Cold-Rolled Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2016, 25, p 1931–1938.

    Article  CAS  Google Scholar 

  32. R.K. Sabat, P.K. Samal, and S. Muzzamil Ahamed, Effect of Strain Path on the Evolution of Microstructure Texture and Tensile Properties of WE43 Alloy, Mater. Sci. Eng. A, 2018, 715, p 348–358.

    Article  CAS  Google Scholar 

  33. S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and Symmetric Rolling of Magnesium: Evolution of Microstructure, Texture and Mechanical Properties, Mater. Sci. Eng. A, 2012, 550, p 19–30.

    Article  CAS  Google Scholar 

  34. J. Geng, M.F. Chisholm, R.K. Mishra, and K.S. Kumar, An Electron Microscopy Study of Dislocation Structures in Mg Single Crystals Compressed Along [0 0 0 1] at Room Temperature, Philos. Mag., 2015, 95(35), p 3910–3932.

    Article  CAS  Google Scholar 

  35. L. Jin, D. Lin, D. Mao, X. Zeng, B. Chen, and W. Ding, Microstructure Evolution of AZ31 Mg Alloy During Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2006, 423(1–2), p 247–252.

    Article  Google Scholar 

  36. D. Panda, R.K. Sabat, S. Suwas, V.D. Hiwarkar, and S.K. Sahoo, Texture Weakening in Pure Magnesium During Grain Growth, Philos. Mag., 2019, 99(11), p 1362–1385.

    Article  CAS  Google Scholar 

  37. B.D. Bishoyi, R.K. Sabat, and S.K. Sahoo, Effect of Temperature on Microstructure and Texture Evolutions During Uniaxial Compression of Commercially Pure Titanium, Mater. Sci. Eng. A., 2018, 718, p 398–411.

    Article  CAS  Google Scholar 

  38. N. Stanford and P.S. Bate, Crystallographic Variant Selection in Ti-6Al-4V, Acta Mater., 2004, 52(17), p 5215–5224.

    Article  CAS  Google Scholar 

  39. D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, and H.L. Fraser, The Role of Crystallographic and Geometrical Relationships Between α and β Phases in an α/β Titanium Alloy, Acta Mater., 2003, 51(16), p 4679–4691.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. S. Suwas, Dept. of Materials Engg., IISc Bangalore, for conducting tension tests of the samples in his Dept. The authors also thank Prof. I. Samajdar for conducting EBSD measurements of the samples in his laboratory, National Facility on OIM and Texture, Dept. of Metallurgical Engg. and Materials Science, IIT Bombay, Powai, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinjamuri, R., Bishoyi, B.D., Sabat, R.K. et al. Microstructure, Texture, and Mechanical Properties of Ti6Al4V Alloy during Uniaxial Tension at Elevated Temperatures. J. of Materi Eng and Perform 32, 5097–5108 (2023). https://doi.org/10.1007/s11665-022-07454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07454-4

Keywords

Navigation