Skip to main content
Log in

Microstructure Evolution and Recrystallization Mechanisms of High Mg Alloyed Al-Mg Alloy during Friction Stir Welding with Different Cooling Media

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Heat input in friction stir welding (FSW) plays a vital role in determining the microstructure of the weld joint. Microstructure evolution and recrystallization mechanisms of high Mg alloyed Al-Mg alloy (Al-9.2 Mg-0.8Mn-0.2Zr-0.15Ti) during FSW with natural cooling and water cooling are carefully investigated by SEM, TEM and EBSD. Compared with natural cooling, water cooling can refine grain size and produce the higher fraction of high-angle grain boundaries (HAGBs) and lower texture intensity in the stir zone (SZ) but generate the lower fractions of HAGBs in the thermo-mechanically affected zone (TMAZ) and heat-affected zone (HAZ) and the higher texture density in the HAZ of the weld joint. The dispersed Al6Mn phases and some broken Al6(Fe, Mn) particles are existent in the SZ of both FSWed joints, while the β-Al3Mg2 phase is dissolved in the SZ due to the frictional heat. Continuous dynamic recrystallization (CDRX) and dynamic recovery (DRV) are the main mechanisms of microstructure evolution in the SZ of both FSWed joints. CDRX occurs in the TMAZ of the joint with natural cooling, while discontinuous dynamic recrystallization (DDRX) occurs in that with water cooling. Static recovery (SRV) and continuous static recrystallization (CSRX) are the main mechanisms of microstructure evolution in the HAZ of the joint with natural cooling, while the microstructure evolution in the HAZ of the joint with water cooling includes SRV and discontinuous static recrystallization mechanism (DSRX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of Friction Stir Welding Parameters on Grain Size and Formability in 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 456, p 344–349.

    Article  Google Scholar 

  2. Z.B. He, Y.Y. Peng, Z.M. Yin, and X.F. Lei, Comparison of FSW and TIG Welded Joints in Al-Mg-Mn-Sc-Zr Alloy Plates, Trans. Nonferr. Metal. Soc. China, 2011, 21, p 1685–1691.

    Article  CAS  Google Scholar 

  3. H.L. Hao, D.R. Ni, Z. Zhang, D. Wang, B.L. Xiao, and Z.Y. Ma, Microstructure and Mechanical Properties of Al-Mg-Er Sheets Jointed by Friction Stir Welding, Mater. Des., 2013, 52, p 706–712.

    Article  CAS  Google Scholar 

  4. S.J. Chen, X.X. Li, X.Q. Jiang, T. Yuan, and Y.Z. Hu, The Effect of Microstructure on the Mechanical Properties of Friction Stir Welded 5A06 Al Alloy, Mater. Sci. Eng. A, 2018, 735, p 382–393.

    Article  CAS  Google Scholar 

  5. B.B. Wang, P. Xue, B.L. Xiao, W.G. Wang, Y.D. Liu, and Z.Y. Ma, Achieving Equal Fatigue Strength to Base Material in a Friction Stir Welded 5083-H19 Aluminum Alloy Joint, Sci. Technol. Weld. Join., 2020, 25(1), p 81–88.

    Article  CAS  Google Scholar 

  6. R.K.R. Singh, D.W. Rathod, R. Prasad, and S. Pandey, Cooling Environment Effect on the Microstructure and Mechanical Properties of Friction Stir-Welded Joints, J. Mater. Eng. Perform., 2019, 28, p 3737–3747.

    Article  CAS  Google Scholar 

  7. K.P. Mehta, P. Carlone, A. Astarita, F. Scherillo, F. Rubino, and P. Vora, Conventional and Cooling Assisted Friction Stir Welding of AA6061 and AZ31B Alloys, Mater. Sci. Eng. A, 2019, 759, p 252–261.

    Article  CAS  Google Scholar 

  8. M.A. Mofid, A. Abdollah-zadeh, and F. Malek Ghaini, The Effect of Water Cooling During Dissimilar Friction Welding of Al Alloy to Mg Alloy, Mater. Des., 2012, 36, p 161–167.

    Article  CAS  Google Scholar 

  9. H.J. Zhang and H.J. Liu, Mathematical Model and Optimization for Underwater Friction Welding of a Heat-Treatable Aluminum Alloy, Mater. Des., 2013, 45, p 206–211.

    Article  CAS  Google Scholar 

  10. P. Chen, J. Chen, S.Y. Qin, S.Q. Zou, S.B. Song, T. Jiang, Z.Q. Zhang, Z.H. Jia, and Q. Liu, Friction Stir Welding Joints of 2195-T8 Al-Li Alloys: Correlation of Temperature Evolution, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2021, 823, p 141501.

    Article  Google Scholar 

  11. X.X. Li, W.J. Xia, H.G. Yan, J.H. Chen, B. Su, M. Song, Z.Z. Li, and Y.L. Li, Dynamic Recrystallization Behaviors of High Mg Alloyed Al-Mg Alloys During High Strain Rate Rolling Deformation, Mater. Sci. Eng. A, 2019, 753, p 59–69.

    Article  CAS  Google Scholar 

  12. N.T. Kunbhar, S.K. Sahoo, I. Samajdar, G.K. Dey, and K. Bhanumurthy, Microstructure and Microtextural Studies of Friction Stir Welded Aluminum Alloy 5052, Mater. Des., 2011, 32, p 1657–1666.

    Article  Google Scholar 

  13. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, and P.J. Withers, Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Prog. Mater. Sci., 2021, 117, p 100752.

    Article  CAS  Google Scholar 

  14. X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, and Z.Y. Ma, Microstructural Evolution of Aluminum Alloy During Friction Stir Welding Under Different Tool Rotation Rates and Cooling Conditions, J. Mater. Sci. Technol., 2019, 35, p 972–981.

    Article  CAS  Google Scholar 

  15. W.F. Xu, J.H. Liu, D.L. Chen, G.H. Luan, and J.S. Yao, Improvements of Strength and Ductility in Aluminum Alloy Joints Via Rapid Cooling During Friction Stir Welding, Mater. Sci. Eng. A, 2012, 548, p 89–98.

    Article  CAS  Google Scholar 

  16. A.P. Reynolds, W.D. Lockwood, and T.U. Seidel, Processing-Property Correlation in Friction Stir Welds, Mater. Sci. Forum, 2000, 331–337, p 1719–1724.

    Article  CAS  Google Scholar 

  17. T. Ding, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, and H.M. Zhu, Effects of Rolling Deformation on Microstructure, Tensile Properties and Corrosion Behaviors of High Mg Alloyed of Al-Mg Alloy, J. Mater. Eng. Perform, 2022, 31, p 2168–2181.

    Article  CAS  Google Scholar 

  18. G.Q. Huang, J. Wu, and Y.F. Shen, A Strategy for Improving the Mechanical Properties of FSWed Joints of Non-Heat-Treatable Al Alloys Through a Combination of Water Cooling and Particle Addition, J. Manuf. Process., 2018, 34, p 667–677.

    Article  Google Scholar 

  19. K.V. Jata, and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys, Scr. Mater., 2000, 43, p 743–749.

    Article  CAS  Google Scholar 

  20. J.Q. Su, T.W. Nelson, and C.J. Sterling, Grain Refinement of Aluminum Alloys by Friction Stir Processing, Philos. Mag., 2006, 86(1), p 1–24.

    Article  CAS  Google Scholar 

  21. A.L. Etter, T. Baudin, N. Fredj, and P. Penelle, Recrystallization Mechanisms in 5251-H14 and 5251-O Aluminum Friction Stir Welds, Mater. Sci. Eng. A, 2007, 445–446, p 94–99.

    Article  Google Scholar 

  22. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Restoration Mechanisms During the Friction Stir Processing of Aluminum Alloy, Metall. Mater. Trans. A, 2015, 46A, p 2823–2828.

    Article  Google Scholar 

  23. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58, p 349–354.

    Article  CAS  Google Scholar 

  24. H.J. Zhang, H.J. Liu, and L. Yu, Microstructural Evolution and its Effect on Mechanical Performance of Joint in Underwater Friction Stir Welded 2219-T6 Aluminum Alloy, Sci. Technol. Weld. Join., 2011, 5(16), p 459–464.

    Article  Google Scholar 

  25. M. Ueki, S. Horie, and T. Nakamura, Factors Affecting Dynamic Recrystallization of Metals and Alloys, Mater. Sci. Technol., 1987, 3, p 329–337.

    Article  CAS  Google Scholar 

  26. H.W. Son, J.C. Lee, C.H. Cho, and S.K. Hyun, Effect of Mg Content on the Dislocation Characteristics and Discontinuous Dynamic Recrystallization During the Hot Deformation of Al-Mg Alloy, J. Alloy. Compd., 2021, 887, p 161397.

    Article  CAS  Google Scholar 

  27. Y.L. Li, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, T. Ding, and X.X. Li, Influences of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Al-Mg Alloy with High Mg Content, Mater. Res. Express, 2020, 7, p 076506.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongge Yan or Jihua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Yan, H., Chen, J. et al. Microstructure Evolution and Recrystallization Mechanisms of High Mg Alloyed Al-Mg Alloy during Friction Stir Welding with Different Cooling Media. J. of Materi Eng and Perform 32, 3809–3820 (2023). https://doi.org/10.1007/s11665-022-07349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07349-4

Keywords

Navigation