Skip to main content
Log in

Mechanical Property Analysis of Triply Periodic Minimal Surface Inspired Porous Scaffold for Bone Applications: A Compromise between Desired Mechanical Strength and Additive Manufacturability

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Porous structure offers the advantage of minimizing stress shielding phenomena and supports bone ingrowth, thereby improving the long-term durability of scaffolds. Unlike conventional techniques, additive manufacturing is capable of fabricating complex pore architecture in an exceedingly controlled fashion. In this paper, implicit surface modeling technique is used to develop the triply periodic minimal surfaces-based scaffolds of varying architectures. Sheet and solid-based wrapped package graph (IWP) and diamond are investigated by finite element analysis of lattices under compression. Parameters of mathematical trigonometric functions are varied to tune the structural characteristics like pore size, porosity on the elastic moduli, and strength of the scaffold. Results indicate that morphological features could be effectively controlled to achieve the desired bone mimicking architectures. In terms of biomechanical performances, IWP and diamond structures achieved the responses similar to surrounding bone tissue and have the good agreement with the data available in the literature for the range of elastic modulus of bone for various anatomical locations; the numerical results show that the architecture, pore size, and porosity have a major impact on performances of scaffolds. Also, in the biomechanical and clinical context, this work highlights the limitations and capabilities of additively manufactured porous scaffolds, thus proposing a permissible design space for the scaffold fabricated by additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.B. Sadegh and A. Oryan, Basic Concepts Regarding Fracture Healing and the Current Opinions and Future Directions in Managing Bone Fractures, Int. Wound J., 2015, 12, p 238–247.

    Article  Google Scholar 

  2. G.C. Vorys, H. Bai, C. Chandhanayingyong, C.H. Lee, J.T. Compton, J.M. Caldwell, T.R. Gardner, J.J. Mao, and F.Y. Lee, Optimal Internal Fixation of Anatomically Shaped Synthetic Bone Grafts for Massive Segmental Defects of Long Bones, Clin. Biomech., 2015, 30, p 1114–1118.

    Article  Google Scholar 

  3. O.M. Aho, P. Lehenkari, J. Ristiniemi, S. Lehtonen, J. Risteli, and H.V. Leskelä, The Mechanism of Action of Induced Membranes in Bone Repair, J. Bone Joint Surg. Am., 2013, 95, p 597–604.

    Article  Google Scholar 

  4. J.W. May Jr., J.B. Jupiter, A.J. Weiland, and H.S. Byrd, Clinical Classification of Post-Traumatic Tibial Osteomyelitis, J. Bone Joint Surg. Am., 1989, 71, p 1422–1428.

    Article  Google Scholar 

  5. H. Nieto and C. Baroan, Limits of Internal Fixation in Long-Bone Fracture, Orthop. Traumatol. Surg. Res., 2017, 103, p S61–S66.

    Article  CAS  Google Scholar 

  6. D. Zhao, T. Zhu, J. Li, L. Cui, Z. Zhang, X. Zhuang, and J. Ding, Poly (Lactic-Co-Glycolic Acid)-based Composite Bone-Substitute Materials, Bioact. Mater., 2021, 6, p 346–360.

    Article  CAS  Google Scholar 

  7. T. Zhu, M. Jiang, M. Zhang, L. Cui, X. Yang, X. Wang, G. Liu, J. Ding, and X. Chen, Biofunctionalized Composite Scaffold to Potentiate Osteoconduction, Angiogenesis, and Favorable Metabolic Microenvironment for Osteonecrosis Therapy, Bioact. Mater., 2022, 9, p 446–460.

    Article  CAS  Google Scholar 

  8. J. Ding, J. Zhang, J. Li, D. Li, C. Xiao, H. Xiao, H. Yang, X. Zhuang, and X. Chen, Electrospun Polymer Biomaterials, Prog. Polym. Sci., 2019, 90, p 1–34.

    Article  CAS  Google Scholar 

  9. L. Cui, J. Zhang, J. Zou, X. Yang, H. Guo, H. Tian, P. Zhang, Y. Wang, N. Zhang, X. Zhuang, Z. Li, J. Ding and X. Chen, Electroactive Composite Scaffold with Locally Expressed Osteoinductive Factor for Synergistic Bone Repair Upon Electrical Stimulation, Biomaterials, 2020, 230, p 119617.

    Article  CAS  Google Scholar 

  10. Z. Wang, H. Le, Y. Wang, H. Liu, Z. Li, X. Yang, C. Wang, J. Ding, and X. Chen, Instructive Cartilage Regeneration Modalities with Advanced Therapeutic Implantations under Abnormal Conditions, Bioact. Mater., 2022, 11, p 317–338.

    Article  Google Scholar 

  11. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y.M. Xie, Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review, Biomaterials, 2016, 83, p 127–141.

    Article  CAS  Google Scholar 

  12. S. Wang, L. Liu, K. Li, L. Zhu, J. Chen, and Y. Hao, Pore Functionally Graded Ti6Al4V Scaffolds for Bone Tissue Engineering Application, Mater. Des., 2019, 168, p 107643.

    Article  CAS  Google Scholar 

  13. I.V. Okulov, A.S. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin, and J. Eckert, Composition Optimization of Low Modulus and High-Strength TiNb-Based Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2017, 65, p 866–871.

    Article  CAS  Google Scholar 

  14. S. Ehtemam-Haghighi, K.G. Prashanth, H. Attar, A.K. Chaubey, G.H. Cao, and L.C. Zhang, Evaluation of Mechanical and Wear Properties of TixNb7Fe Alloys Designed for Biomedical Applications, Mater. Des., 2016, 111, p 592–599.

    Article  CAS  Google Scholar 

  15. T. Poltue, C. Karuna, S. Khrueaduangkham, S. Seehanam, and P. Promoppatum, Design Exploration of 3D-Printed Triply Periodic Minimal Surface Scaffolds for Bone Implants, Int. J. Mech. Sci., 2021, 211, p 106762.

    Article  Google Scholar 

  16. S. Gross and E.W. Abel, A Finite Element Analysis of Hollow Stemmed Hip Prostheses as a Means of Reducing Stress Shielding of the Femur, J. Biomech., 2001, 34, p 995–1003.

    Article  CAS  Google Scholar 

  17. Niinomi M, Nakai M, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, Int. J. Biomater., 2011, p 1–10.

  18. L. Wang, J. Kang, C. Sun, D. Li, Y. Cao, and Z. Jin, Mapping Porous Microstructures to Yield Desired Mechanical Properties for Application in 3D Printed Bone Scaffolds and orthopaedic Implants, Mater. Des., 2017, 133, p 62–68.

    Article  CAS  Google Scholar 

  19. L.J. Gibson, Biomechanics of Cellular Solids, J. Biomech., 2005, 38, p 377–399.

    Article  Google Scholar 

  20. M.R. Dias, P.R. Fernandes, J.M. Guedes, and S.J. Hollister, Permeability Analysis of Scaffolds for Bone Tissue Engineering, J. Biomech., 2012, 45, p 938–944.

    Article  CAS  Google Scholar 

  21. S.J. Hollister, Porous Scaffold Design for Tissue Engineering, Nat. Mater., 2005, 4, p 518–524.

    Article  CAS  Google Scholar 

  22. T.S. Karande, J.L. Ong, and C.M. Agrawal, Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing, Ann. Biomed. Eng., 2004, 32, p 1728–1743.

    Article  Google Scholar 

  23. F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, and A.A. Zadpoor, Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological Mechanical, and Mass Transport Properties, Acta Biomater., 2017, 53, p 572–584.

    Article  CAS  Google Scholar 

  24. K.B. Hazlehurst, C.J. Wang, and M. Stanford, An Investigation into the Flexural Characteristics of Functionally Graded Cobalt Chrome Femoral Stems Manufactured Using Selective Laser Melting, Mater. Des., 2014, 60, p 177–183.

    Article  CAS  Google Scholar 

  25. K.B. Hazlehurst, C.J. Wang and M. Stanford, A Numerical Investigation into the Influence of the Properties of Cobalt Chrome Cellular Structures on the Load Transfer to the Periprosthetic Femur Following Total Hip Arthroplasty, Med. Eng. Phys., 2014, 36, p 458–466.

    Article  Google Scholar 

  26. T. Zhu, Y. Cui, M. Zhang, D. Zhao, G. Liu, and J. Ding, Engineered Three-Dimensional Scaffolds for Enhanced Bone Regeneration in Osteonecrosis, Bioact. Mater., 2020, 5, p 584–601.

    Article  Google Scholar 

  27. M. Fantini and M. Curto, Interactive Design and Manufacturing of a Voronoi-Based Biomimetic Bone Scaffold for Morphological Characterization, Int. J. Interact. Des. Manuf., 2018, 12, p 585–596.

    Article  Google Scholar 

  28. S. Gómez, M.D. Vlad, J. López, and E. Fernández, Design and Properties of 3D Scaffolds for Bone Tissue Engineering, Acta Biomater., 2016, 42, p 341–350.

    Article  Google Scholar 

  29. P.H. Warnke, T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, S.T. Becker, I.N. Springer, J. Wiltfang, and S. Sivananthan, Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering, Tissue Eng. Part C, 2009, 15, p 115–124.

    Article  CAS  Google Scholar 

  30. A.A. Zadpoor, Bone Tissue Regeneration: The Role of Scaffold Geometry, Biomater. Sci., 2015, 3, p 231–245.

    Article  CAS  Google Scholar 

  31. H. Chen, Q. Han, C. Wang, Y. Liu, B. Chen, and J. Wang, Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review, Front. Bioeng. Biotechnol., 2020, 8, p 609.

    Article  Google Scholar 

  32. W. Peng, L. Xu, J. You, L. Fang, and Q. Zhang, Selective Laser Melting of Titanium Alloy Enables Osseointegration of Porous Multi-Rooted Implants in a Rabbit Model, Biomed. Eng. Online, 2016, 15, p 1–13.

    Article  Google Scholar 

  33. L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, and C.J. Sutcliffe, Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone in-Growth Constructs, Suitable for Orthopedic Applications, J. Biomed. Mater. Res. B. Appl. Biomater., 2009, 89, p 325–334.

    Article  Google Scholar 

  34. H.A. Zaharin, A.M.A. Rani, F.I. Azam, T.L. Ginta, N. Sallih, A. Ahmad, N.A. Yunus, and T.Z.A. Zulkifli, Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds, Materials, 2018, 11, p 1–15.

    Article  Google Scholar 

  35. B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, and T. Nakamura, Pore Throat Size and Connectivity Determine Bone and Tissue Ingrowth into Porous Implants: Three-Dimensional Micro-CT Based Structural Analyses of Porous Bioactive Titanium Implants, Biomaterials, 2006, 27, p 5892–5900.

    Article  CAS  Google Scholar 

  36. D.J. Yoo, Advanced Porous Scaffold Design Using Multi-Void Triply Periodic Minimal Surface Models with High Surface Area to Volume Ratios, Int. J. Precis. Eng. Manuf., 2014, 15, p 1657–1666.

    Article  Google Scholar 

  37. H. Karcher, The Triply Periodic Minimal Surfaces of Alan Schoen and Their Constant Mean Curvature Companions, Manuscr. Math., 1989, 64, p 291–357.

    Article  Google Scholar 

  38. S.B.G. Blanquer, M. Werner, M. Hannula, S. Sharifi, G.P.R. Lajoinie, D. Eglin, J. Hyttinen, A.A. Poot and D.W. Grijpma, Surface Curvature in Triply-Periodic Minimal Surface Architectures as a Distinct Design Parameter in Preparing Advanced Tissue Engineering Scaffolds, Biofabrication, 2017, 9, p 1–13.

    Article  Google Scholar 

  39. J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, A TPMS-Based Method for Modeling Porous Scaffolds for Bionic Bone Tissue Engineering, Sci. Reports, 2018, 8, p 1–10.

    Google Scholar 

  40. X. Zheng, Z. Fu, K. Du, C. Wang, and Y. Yi, Minimal Surface Designs for Porous Materials: From Microstructures to Mechanical Properties, J. Mater. Sci., 2018, 53, p 10194–10208.

    Article  CAS  Google Scholar 

  41. O. Al-Ketan, M. Adel Assad, and R.K. Abu Al-Rub, Mechanical Properties of Periodic Interpenetrating Phase Composites with Novel Architected Microstructures, Compos. Struct., 2017, 176, p 9–19.

    Article  Google Scholar 

  42. I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading, Mater. Des., 2018, 155, p 220–232.

    Article  Google Scholar 

  43. O. Al-Ketan, R.K. Abu Al-Rub, U. Abu Dhabi, and A. Dhabi, MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces, Mater. Des. Process. Commun., 2021, 3, p e205.

    Google Scholar 

  44. S.R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, and D. Pasini, High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay between Cell Morphology, Mech. Prop. Bone Ingrowth and Manuf Constraints, Acta Biomater., 2016, 30, p 345–356.

    Google Scholar 

  45. C. Kasper, F. Witte, and R. Pörtner, Tissue Engineering III: Cell - Surface Interactions for Tissue Culture, Advances in Biochemical Engineering/Biotechnology, Springer, T. Scheper, 2012, p 126

    Google Scholar 

  46. S. Vijayavenkataraman, L. Zhang, S. Zhang, J.Y.H. Fuh and W.F. Lu, Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design, ACS Appl. Bio Mater., 2018, 1, p 259–269.

    Article  CAS  Google Scholar 

  47. U. Simsek, A. Akbulut, C.E. Gayir, C. Basaran, and P. Sendur, Modal Characterization of Additively Manufactured TPMS Structures: Comparison between Different Modeling Methods, Int. J. Adv. Manuf. Technol., 2021, 115, p 657–674.

    Article  Google Scholar 

  48. C.I. Albert, J. Jameson, and G. Harris, Design and Validation of Bending Test Method for Characterization of Miniature Pediatric Cortical Bone Specimens, Proc. Inst. Mech. Eng. H., 2013, 227, p 105–113.

    Article  Google Scholar 

  49. J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures with Electron Beam Melting (EBM), J. Mech. Behav. Biomed. Mater., 2010, 3, p 249–259.

    Article  Google Scholar 

  50. K. Hazlehurst, C.J. Wang, and M. Stanford, Evaluation of the Stiffness Characteristics of Square Pore CoCrMo Cellular Structures Manufactured Using Laser Melting Technology for Potential Orthopaedic Applications, Mater. Des., 2013, 51, p 949–955.

    Article  CAS  Google Scholar 

  51. H. Mehboob, F. Tarlochan, A. Mehboob, and S.H. Chang, Finite Element Modelling and Characterization of 3D Cellular Microstructures for the Design of a Cementless Biomimetic Porous Hip Stem, Mater. Des., 2018, 149, p 101–112.

    Article  CAS  Google Scholar 

  52. Y. Jin, H. Kong, X. Zhou, G. Li, and J. Du, Design and Characterization of Sheet-Based Gyroid Porous Structures with Bioinspired Functional Gradients, Mater., 2020, 13, p 3844.

    Article  CAS  Google Scholar 

  53. M. Keshavarzan, M. Kadkhodaei, M. Badrossamay, and M.R. KaramoozRavari, Investigation on the Failure Mechanism of Triply Periodic Minimal Surface Cellular Structures Fabricated by Vat Photopolymerization Additive Manufacturing under Compressive Loadings, Mech. Mater., 2020, 140, p 103150.

    Article  Google Scholar 

  54. F.P.W. Melchels, A.M.C. Barradas, C.A. Van Blitterswijk, J. De Boer, J. Feijen, and D.W. Grijpma, Effects of the Architecture of Tissue Engineering Scaffolds on Cell Seeding and Culturing, Acta Biomater., 2010, 6, p 4208–4217.

    Article  CAS  Google Scholar 

  55. D. Mahmoud and M.A. Elbestawi, Selective Laser Melting of Porosity Graded Lattice Structures for Bone Implants, Int. J. Adv. Manuf. Technol., 2018, 100, p 2915–2927.

    Article  Google Scholar 

  56. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7, p 1709–1800.

    Article  Google Scholar 

  57. A.H. Burstein, D.T. Reilly, and M. Martens, Aging of Bone Tissue: Mechanical Properties, J. Bone Jt. Surg. Am., 1976, 58, p 82–86.

    Article  CAS  Google Scholar 

  58. K.M. Abate, A. Nazir, and J.Y. Jeng, Design, Optimization, and Selective Laser Melting of Vin Tiles Cellular Structure-Based Hip Implant, Int. J. Adv. Manuf. Technol., 2021, 112, p 2037–2050.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Institute of Technology Raipur, India through “Research Seed Grant Project” (Sanction Order No. NITRR/Dean(R&C)/2019/116 on Dated 03/04/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Verma, R., Singh, N.K. et al. Mechanical Property Analysis of Triply Periodic Minimal Surface Inspired Porous Scaffold for Bone Applications: A Compromise between Desired Mechanical Strength and Additive Manufacturability. J. of Materi Eng and Perform 32, 3335–3347 (2023). https://doi.org/10.1007/s11665-022-07322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07322-1

Keywords

Navigation