Skip to main content

Advertisement

Log in

Influence of Al Variation on the Mechanical Properties and Critical Shear Stress of Twinning in Fe-Mn-Al-C Steels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deformation behavior of three tensile deformed high-Mn steels with varying Al contents (0, 1 and 3 wt.%) is discriminated on the basis of their respective critical shear stress of twinning, derived from their respective stacking fault energies (18.1-41.6 mJ/m2) estimated according to x-ray diffraction line profile analyses. The Al-free steel manifested maximum strain hardening rate ~ 3 GPa that gradually dropped with addition of Al. The critical twinning stress, \({\tau }_{c}\), of the steels was estimated as: 246, 348 and 561 MPa. Increasing stacking fault energies lead to an adaptation in deformation mechanism from: \((\gamma \to \varepsilon )\) transformation \(\to\) deformation twinning \(\to\) dislocation plasticity—as was noted from x-ray diffraction and transmission electron microscopy studies. The highest strain hardening observed in Al-free steel was attributed to the presence of \(\varepsilon\)-martensite in the austenite microstructure. The incidences of \(\varepsilon\)-martensite and/or twinning were found to be directly related to the equilibrium width of the overlapping stacking faults. The critical shear stress-based calculations could better explain the adaptation of plasticity mechanisms in Fe-Mn-Al-C steels than the prediction based on the stacking fault energy alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168.

    Article  CAS  Google Scholar 

  2. B.C. De Cooman, Y. Estrin and S.K. Kim, Twinning-Induced Plasticity (TWIP) Steels, Acta Mater., 2018, 142, p 283–362.

    Article  Google Scholar 

  3. O. Grӓssel, L. Krüger, G. Frommeyer and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409.

    Article  Google Scholar 

  4. S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58, p 5129–5141.

    Article  CAS  Google Scholar 

  5. H. Idrissi, K. Renard, D. Schryvers and P.J. Jacques, On the Relationship between the Twin Internal Structure and the Work-Hardening Rate of TWIP Steels, Scr. Mater., 2010, 63, p 961–964.

    Article  CAS  Google Scholar 

  6. J.D. Yoo and K.-T. Park, Microband-Induced Plasticity in a High Mn-Al-C Light Steel, Mater. Sci. Eng. A, 2008, 496, p 417–424.

    Article  Google Scholar 

  7. E. Welsch, D. Ponge, S.M. Hafez Haghighat, P. Choi, M. Herbig, S. Zaefferer and D. Raabe, Strain Hardening by Dynamic Slip Band Refinement in a High-Mn Lightweight Steel, Acta Mater., 2016, 116, p 188–199.

    Article  CAS  Google Scholar 

  8. T. Riaz, S.R. Das, T. Sahu, P.C. Chakraborti and P. Sahu, Dislocation Substructures in Tensile Deformed Fe-Mn-Al-C Steel, Mater. Lett., 2021, 282, p 128691.

    Article  CAS  Google Scholar 

  9. A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A., 2009, 40A, p 3076–3090.

    Article  CAS  Google Scholar 

  10. A. Dumay, J.-P. Chateau, S. Allain, S. Migot and O. Bouaziz, Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel, Mater. Sci. Eng. A., 2008, 483–484, p 184–187.

    Article  Google Scholar 

  11. J. Chen, F.T. Dong, Z.Y. Liu and G.D. Wang, Grain Size Dependence of Twinning Behaviors and Resultant Cryogenic Impact Toughness in High Manganese Austenitic Steel, J. Mater. Res. Technol., 2021, 10, p 175–187.

    Article  CAS  Google Scholar 

  12. B. Mahato, S. Shee, T. Sahu, S.G. Chowdhury, P. Sahu, D. Porter and L. Karjalainen, An Effective Stacking Fault Energy Viewpoint on the Formation of Extended Defects and their Contribution to Strain Hardening in a Fe-Mn-Si-Al Twinning Induced Plasticity Steel, Acta Mater, 2015, 86, p 69–79.

    Article  CAS  Google Scholar 

  13. J.K. Kim and B.C. De Cooman, Stacking Fault Energy and Deformation Mechanisms in Fe-xMn-0.6C-yAl TWIP Steel, Mater. Sci. Eng. A, 2016, 676, p 216–231.

    Article  CAS  Google Scholar 

  14. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li and S.X. Li, Deformation Twinning in Polycrystalline Copper at Room Temperature and Low Strain Rate, Acta Mater., 2006, 54, p 655–665.

    Article  CAS  Google Scholar 

  15. E. El-Danaf, S.R. Kalidindi and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in Fcc Metals, Metall. Mater. Trans. A, 1999, 30, p 1223–1233.

    Article  Google Scholar 

  16. K.V. Werner, F. Niessen, M. Villa and M.A.J. Somers, Experimental Validation of Negative Stacking Fault Energies in Metastable Face-Centered Cubic Materials, Appl. Phys. Lett., 2021, 119, p 141902.

    Article  CAS  Google Scholar 

  17. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/e-Martensite Interfacial Energies in Fe–Mn–(Al–Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253.

    Article  CAS  Google Scholar 

  18. R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metall. Trans. A, 1975, 6, p 1345–1351.

    Article  Google Scholar 

  19. S.N. Dey, P. Chatterjee and S.P. Sen Gupta, Study of Deformation Stacking Faults and Dislocation Microstructures in Cu–1Sn–Zn Alloys, Acta Mater., 2005, 53, p 4635–4642.

    Article  CAS  Google Scholar 

  20. G.B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part I. General Concepts and the FCC → HCP Transformation, Metal Trans A, 1976, 7, p 1897–1904.

    Google Scholar 

  21. S.R. Das, S. Shyamal, S.K. Shee, J.I. Kömi and P. Sahu, X-ray Line Profile Analysis of the Deformation Microstructure in a Medium-Grained Fe-Mn-Al-C Austenitic Steel, Mater. Charact., 2021, 172, p 110833.

    Article  CAS  Google Scholar 

  22. S. Shyamal, S.R. Das, M. Jaskari, D.A. Porter, L.P. Karjalainen and P. Sahu, Graded Deformation in an Fe-Mn-Al-C Steel under Bending Fatigue, Mater. Lett., 2021, 285, p 129002.

    Article  CAS  Google Scholar 

  23. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 1969, 2, p 65–71.

    Article  CAS  Google Scholar 

  24. L. Lutterotti, MAUD, version 2.038; 2006. <http://www.ing.unitn.it/~luttero/maud>.

  25. A.H. Cottrell, A Note on the Portevin-Le Chatelier Effect, Phil. Mag., 1953, 44, p 829–832.

    Article  CAS  Google Scholar 

  26. B.K. Zuidema, D.K. Subramanyam and W.C. Leslie, The Effect of Aluminium on the Work Hardening and Wear Resistance of Hadfield Manganese Steel, Metall. Trans. A, 1987, 18, p 1629–1639.

    Article  Google Scholar 

  27. S.W. Hwang, J.H. Ji and K.T. Park, Effects of Al Addition on High Strain Rate Deformation of Fully Austenitic High Mn Steels, Mater. Sci. Eng. A, 2011, 528, p 7267–7275.

    Article  CAS  Google Scholar 

  28. J.-E. Jin and Y.-K. Lee, Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel, Acta Mater., 2012, 60, p 1680–1688.

    Article  CAS  Google Scholar 

  29. B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim and S.H. Hong, Effect of Aluminium on Deformation Mode and Mechanical Properties of Austenitic Fe-Mn-Cr-A1-C Alloys, Mater. Sci. Eng. A, 1995, 197, p 147–156.

    Article  Google Scholar 

  30. J.H. Hollomon, Time-Temperature Relations in Tempering Steel, Trans. AIME, 1945, 162, p 223–249.

    Google Scholar 

  31. B. Hortigón, J.M. Gallardo, E.J.N. García and J.A. López, Strain Hardening Exponent and Strain at Maximum Stress: Steel Rebar Case, Constr Build Mater., 2019, 196, p 175–184.

    Article  Google Scholar 

  32. M. Gensamer, Strength and Ductility, Metallogr. Microstruct. Anal., 2017, 6, p 171–185.

    Article  CAS  Google Scholar 

  33. J.K. Kim, Y. Estrin and B.C. De Cooman, Constitutive Modeling of the Stacking Fault Energy-Dependent Deformation Behavior of Fe-Mn-C-(Al) TWIP Steels, Metal. Mater. Trans. A, 2018, 49, p 5919–5924.

    Article  CAS  Google Scholar 

  34. S.R. Das, S. Shyamal, T. Sahu, J.I. Kömi, P.C. Chakraborti, D.A. Porter, L.P. Karjalainen c and P. Sahu, On the Mechanism of Cross-Slip Induced Dislocation Substructure Formation in a High-Mn Steel, Materialia, 2021, 15, p 101042.

    Article  CAS  Google Scholar 

  35. S. Takaki, H. Nakatsu and Y. Tokunaga, Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15 Mass% Mn Alloy, Mater. Trans. JIM, 1993, 34, p 489–495.

    Article  CAS  Google Scholar 

  36. P. Sahu, A.S. Hamada, R.N. Ghosh, L.P. Karjalainen, X-ray Diffraction Study on Cooling-Rate-Induced Martensitic Transformation in Cast-Homogenized Fe-26Mn-0.14C Austenitic Steel, Metal. Mater. Trans. A, 2007, 38, p 1991–2000.

  37. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51, p 3063–3071.

    Article  CAS  Google Scholar 

  38. Z.-H. Lai, Y.-H. Sun, Y.-T. Lin, Tu. Jui-Fan and H.-W. Yen, Mechanism of Twinning Induced Plasticity in Austenitic Lightweight Steel Driven by Compositional Complexity, Acta Mater., 2021, 210, p 116814.

    Article  CAS  Google Scholar 

  39. J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118.

    Article  CAS  Google Scholar 

  40. W.S. Wang and C.M. Wan, The Influence of Aluminium Content to the Stacking Fault Energy in Fe-Mn-Al-C Alloy System, J. Mater. Sci., 1990, 25, p 1821–1823.

    Article  Google Scholar 

  41. N. Naeita and J. Takamura, Deformation Twinning in Silver-and Copper Alloy Crystals, Phil. Mag., 1974, 29(5), p 1001–1028.

    Article  Google Scholar 

  42. M.A. Meyers, O. Vöhringer and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta mater., 2001, 49, p 4025–4039.

    Article  CAS  Google Scholar 

  43. D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters and D. Raabe, Revealing the Strain-Hardening Behavior of Twinning-Induced Plasticity Steels: Theory, Simulations, Experiments, Acta mater., 2013, 61(494–510), p 495.

    Google Scholar 

  44. H.Y. Diao, R. Feng, K.A. Dahmen and P.K. Liaw, Fundamental Deformation Behavior in High-Entropy Alloys: An Overview, Curr. Opin. Solid State Mater. Sci., 2017, 21(252–266), p 253.

    Google Scholar 

Download references

Acknowledgments

TR and SRD acknowledge the support of Department of Science and Technology, Government of India, for awarding DST/Inspire fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, T., Das, S.R. & Sahu, P. Influence of Al Variation on the Mechanical Properties and Critical Shear Stress of Twinning in Fe-Mn-Al-C Steels. J. of Materi Eng and Perform 32, 1636–1644 (2023). https://doi.org/10.1007/s11665-022-07232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07232-2

Keywords

Navigation