Skip to main content

Advertisement

Log in

The Effect of Multistage Aging on Mechanical Properties and Microstructure of Forged 7050 Aluminum Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new four-stage aging treatment, which is composed of pre-aging, retrogression, natural aging (NA) and re-aging, is designed to increase the tensile properties and the fatigue life of forged 7050 aluminum alloy in this work. As compared to traditional T74 and RRA treatments, the four-stage aging-treated sample exhibits the highest tensile properties and ductility. The tensile strength and yield strength are 627 and 608 MPa, respectively, and the elongation is 11.3%. The results of TEM and DSC show that an increased G.P zones and fine η′ phase distributed in the matrix of the alloy are subjected by this new aging processing as compared with T74 and RRA treatments. The natural aging in four-stage aging treatment accelerates the diffusion of Mg vacancies, and promotes the precipitation of G.P zones in grain interior during re-aging stage. On the basis of dislocation shearing mechanism, more dense and fine G.P zones of four-stage aging temper result in the superior tensile strength as compared to T74 and RRA temper. In addition, a combination of shearable precipitates, fine GBPs and narrow PFZs is beneficial to the slip reversibility in the plastic zone at the crack tip, thereby reducing fatigue damage accumulation and increasing the fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Ma, T. Hu, H. Yang et al., Coupling of Dislocations and Precipitates: Impact on the Mechanical Behavior of Ultrafine Grained Al-Zn-Mg Alloys, Acta Mater., 2016, 103(15), p 153–164

    Article  Google Scholar 

  2. L.M. Wu, W.H. Wang, Y.F. Hsu et al., Effects of Homogenization Treatment on Recrystallization Behavior and Dispersoid Distribution in an Al-Zn-Mg-Sc-Zr allOy, J. Alloys Compd., 2008, 456(1), p 163–169

    Article  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel et al., Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280(1), p 102–107

    Article  Google Scholar 

  4. X.Z. Li, V. Hansen, J. Gjønnes et al., HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys, Acta Mater., 1999, 47(9), p 2651–2659

    Article  Google Scholar 

  5. L.F. Mondolfo, N.A. Gjostein, and D.W. Levinson, Structural Changes During the Aging in an Al-Mg-Zn Alloy, JOM, 1956, 8(10), p 1378–1385

    Article  Google Scholar 

  6. A. Deschamps and Y. Brechet, Influence of Quench and Heating Rates on the Aging Response of an Al-Zn-Mg-(Zr) Alloy, Mater. Sci. Eng. A, 1998, 251(1–2), p 200–207

    Article  Google Scholar 

  7. K. Stiller, P.J. Warren, V. Hansen et al., Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Aging Treatment at 100 and 150 °C, Mater. Sci. Eng. A, 1999, 270(1), p 55–63

    Article  Google Scholar 

  8. F. Viana, A.M.P. Pinto, H.M.C. Santos et al., Retrogression and Re-aging of 7075 Aluminium Alloy: Microstructural Characterization, J. Mater. Process. Technol., 1999, 92, p 54–59

    Article  Google Scholar 

  9. Cina B, December 24, 1974, U.S. patent 3,856,584.

  10. A.F. Oliveira, Jr., M.C. De Barros, K.R. Cardoso et al., The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminium Alloys, Mater. Sci. Eng. A, 2004, 379(1–2), p 321–326

    Article  Google Scholar 

  11. J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Ai-7075-T651, Metall. Mater. Trans. A, 1984, 15(8), p 1531–1543

    Article  Google Scholar 

  12. X. Chen, Z. Liu, M. Lin et al., Enhanced Fatigue Crack Propagation Resistance in an Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment, J. Mater. Eng. Perform., 2012, 21(11), p 2345–2353

    Article  Google Scholar 

  13. M.N. Desmukh, R.K. Pandey, and A.K. Mukhopadhyay, Effect of Aging Treatments on the Kinetics of Fatigue Crack Growth in 7010 Aluminum Alloy, Mater. Sci. Eng. A, 2006, 435, p 318–326

    Article  Google Scholar 

  14. G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050), Acta Mater., 2004, 52(15), p 4503–4516

    Article  Google Scholar 

  15. L. Lu, Y. Shen, X. Chen et al., Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304(5669), p 422–426

    Article  Google Scholar 

  16. Q. Zhao, Z. Qian, X. Cui et al., Influences of Fe, Si and Homogenization on Electrical Conductivity and Mechanical Properties of Dilute Al-Mg-Si Alloy, J. Alloys Compd., 2016, 666, p 50–57

    Article  Google Scholar 

  17. R. Ferragut, A. Somoza, and A. Tolley, Microstructural Evolution of 7012 Alloy During the Early Stages of Artificial Aging, Acta Mater., 1999, 47(17), p 4355–4364

    Article  Google Scholar 

  18. R. Ferragut, A. Somoza, and A. Dupasquier, On the Two-Step Aging of a Commercial Al-Zn-Mg Alloy; A Study by Positron Lifetime Spectroscopy, J. Phys.: Condens. Matter, 1996, 8(45), p 8945

    Google Scholar 

  19. J.F. Li, Z. Peng, C.X. Li et al., Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy With Various Aging Treatments, Trans. Nonferrous Met. Soc. China, 2008, 18(4), p 755–762

    Article  Google Scholar 

  20. J.M. Fragomeni and B.M. Hillberry, A Micromechanical Method for Predicting the Precipitation Hardening Response of Particle Strengthened Alloys Hardened by Ordered Precipitates, Acta Mech., 1999, 138(3–4), p 185–210

    Article  Google Scholar 

  21. J. Chen, L. Zhen, S. Yang et al., Investigation of Precipitation Behavior and Related Hardening in AA 7055 Aluminum Alloy, Mater. Sci. Eng. A, 2009, 500(1–2), p 34–42

    Article  Google Scholar 

  22. Y. Liu, D. Jiang, B. Li et al., Effect of Cooling Aging on Microstructure and Mechanical Properties of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 57, p 79–86

    Article  Google Scholar 

  23. D. Dumont, A. Deschamps, and Y. Brechet, On the Relationship Between Microstructure, Strength and Toughness in AA7050 Aluminum Alloy, Mater. Sci. Eng. A, 2003, 356(1–2), p 326–336

    Article  Google Scholar 

  24. T. Marlaud, A. Deschamps, F. Bley et al., Evolution of Precipitate Microstructures During the Retrogression and Re-aging Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58(14), p 4814–4826

    Article  Google Scholar 

  25. F. Chun, Z.Y. Liu, A.L. Ning et al., Retrogression and Re-aging Treatment of Al-9.99% Zn-1.72% Cu-2.5% Mg-0.13% Zr Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16(5), p 1163–1170

    Article  Google Scholar 

  26. R.K.W. Marceau, G. Sha, R. Ferragut et al., Solute Clustering in Al-Cu-Mg Alloys During the Early Stages of Elevated Temperature Aging, Acta Mater., 2010, 58(15), p 4923–4939

    Article  Google Scholar 

  27. S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998

    Book  Google Scholar 

  28. K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue, 2010, 32(9), p 1428–1447

    Article  Google Scholar 

  29. K.S. Al-Rubaie, M.A. Del Grande, D.N. Travessa et al., Effect of Pre-strain on the Fatigue Life of 7050-T7451 Aluminium Alloy, Mater. Sci. Eng. A, 2007, 464(1–2), p 141–150

    Article  Google Scholar 

  30. S. Bai, Z. Liu, Y. Li et al., Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng. A, 2010, 527(7–8), p 1806–1814

    Article  Google Scholar 

  31. Y.L. Wang, Q.L. Pan, L.L. Wei et al., Effect of Retrogression and Reaging Treatment on the Microstructure and Fatigue Crack Growth Behavior of 7050 Aluminum Alloy Thick Plate, Mater. Des., 2014, 55, p 857–863

    Article  Google Scholar 

  32. E. Hornbogen, Martensitic Transformation at a Propagating Crack, Acta Metall., 1978, 26(1), p 147–152

    Article  Google Scholar 

  33. Handbook A S M, Fatigue and Fracture, vol. 19 (ASM International, 1996).

  34. B. Cai, B.L. Adams, and T.W. Nelson, Relation Between Precipitate-Free Zone Width and Grain Boundary Type in 7075-T7 Al Alloy, Acta Mater., 2007, 55(5), p 1543–1553

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (2016YFB0300900), the National Key Fundamental Research Project of China (2012CB619506-3), National Natural Science Foundation of China (51171209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Z., Bai, S. et al. The Effect of Multistage Aging on Mechanical Properties and Microstructure of Forged 7050 Aluminum Alloys. J. of Materi Eng and Perform 28, 3590–3599 (2019). https://doi.org/10.1007/s11665-019-04115-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04115-x

Keywords

Navigation