Skip to main content
Log in

Achieving an Optimal Balance of Strength and Elongation in AA 1050 Aluminum Alloy via Equal Channel Angular Pressing, Intermediate Annealing, and Post-Rolling

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present paper has focused on improving strength and elongation of AA 1050 alloy via equal channel angular pressing (ECAP), intermediate annealing and post-rolling process. At the first and second ECAP passes, the ideal shear texture component has been developed while by proceeding ECAP passes (n = 3, 4), the intensity of texture component has been weakened. In the following, as a result of intermediate annealing at 150 °C, cube texture component ({001}<110>) was developed in the alloy. Then during post-rolling process, the prior texture component disappeared and the augmentation of copper-type texture component ({110}<112>) has been observed. The first and second ECAP passes lead to increase in ultimate tensile strength at the expense of considerable decrease in elongation and work hardening capacity. However, during third and fourth ECAP passes, the homogenous microstructure with fine equiaxed grain is achieved, also intermediate annealing at 150 and 225 °C and 50-75% rolling reduction attributed to high angle grain boundaries (HAGBs) promotion. Eventually, an appropriate balance of strength, elongation and work hardening capacity of AA 1050 alloy is obtained via ECAP (n = 3, 4), intermediate annealing (T = 150, 225 °C) and post-rolling (r = 50-75%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Figure 8
Fig. 9

Similar content being viewed by others

References

  1. R. Ciach, Advanced Light Alloys and Composites, Springer, Warszawa, 2013.

    Google Scholar 

  2. E.G. Totten and D.S. MacKenzie, Handbook of Aluminum: Alloy Production and Materials Manufacturing, CRC Press, Washington, DC, 2003.

    Book  Google Scholar 

  3. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Elsevier, Amsterdam, 2013.

    Google Scholar 

  4. M.S. Shadabroo, A.R. Eivani, H.R. Jafarian, S.F. Razavi and J. Zhou, Optimization of Interpass Annealing for a Minimum Recrystallized Grain Size and Further Grain Refinement Towards Nanostructured AA6063 During Equal Channel Angular Pressing, Mater. Charact., 2016, 112(1–2), p 160.

    Article  CAS  Google Scholar 

  5. L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso and G. González, Effect of the Initial ECAP Passes on Crystal Texture and Residual Stresses of 5083 Aluminum Alloy, Int. J. Min. Met. Mater, 2020, 27(6), p 801.

    Article  Google Scholar 

  6. Z.J. Yang, K. Wang and Y. Yang, Optimization of ECAP—RAP Process for Preparing Semisolid Billet of 6061 Aluminum Alloy, Int. J. Min. Met. Mater, 2020, 27, p 792.

    Article  CAS  Google Scholar 

  7. M. Howeyze, H. Arabi, A.R. Eivani and H.R. Jarafrian, Strengthening of AA5052 Aluminum Alloy by Equal Channel Angular Pressing Followed by Softening at Room Temperature, Mater. Sci. Eng. A, 2018, 720(21), p 160.

    Article  CAS  Google Scholar 

  8. S. Valipour, A.R. Eivani, H.R. Jafarian, S.H. Seyedein and M.R. Aboutalebi, Effect of Pre-Deformation Thermomechanical Processing on the Development of Ultrafine Grain Structure During Equal Channel Angular Extrusion, Mater. Des., 2016, 89(5), p 377.

    Article  Google Scholar 

  9. R. Srinivasan, B. Cherukuri and P.K. Chaudhury, Scaling Up of Equal Channel Angular Pressing (ECAP) for the Production of Forging Stock, Mater. Sci. Forum, 2006, 503(4), p 371.

    Article  Google Scholar 

  10. V.M. Segal, Equal Channel Angular Extrusion: From Macro-Mechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(4), p 322.

    Article  Google Scholar 

  11. Y.G. Jin, H.M. Baek, S.K. Hwang, Y.T. Im and B.C. Jeon, Continuous High Strength Aluminum Bolt Manufacturing by the Spring-Loaded ECAP System, J. Mater. Process. Technol, 2012, 212(4), p 848.

    Article  CAS  Google Scholar 

  12. S. Sivasankaran, Aluminium Alloys: Recent Trends in Processing Characterization Mechanical Behavior and APPLICATIONS, IntechOpen, Croatia, 2017.

    Google Scholar 

  13. K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon, Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing, Acta Mater., 1998, 46(5), p 1589.

    Article  CAS  Google Scholar 

  14. P. Venkatachalam, S.R. Kumar, B. Ravisankar, V.T. Paul and M. Vijayalakshmi, Effect of Processing Routes on Microstructure and Mechanical Properties of Al Alloy Processed by Equal Channel Angular Pressing, Trans. Nonferrous Met. Soc., 2010, 20(10), p 1822.

    Article  CAS  Google Scholar 

  15. Y. Watanabe, P.D. Sequeira, O. Sitdikov, H. Sato, Z.G. Zhang and L.S. Kim, Effect of Processing Route on Microstructure and Texture Development in ECAP of Al-Ti Alloy, Mater. Sci. Forum, 2007, 561(11), p 251.

    Article  Google Scholar 

  16. J. Bi, K. Sun, R. Liu, R. Fan and S. Wang, Effect of ECAP Pass Number on Mechanical Properties of 2A12 Al Alloy, J. Wuhan Univ. Technol. Mater. Sci, 2008, 23(1), p 71.

    Article  CAS  Google Scholar 

  17. A. Nashith, P. Sanjid, M. Shamsudheen, R. Rasheeque, M.K. Ramis and A.R. Shebeer, Effect of Equal Channel Angular Pressing (ECAP) on Hardness and Microstructure of Pure Aluminum, Int. J. Mater. Eng., 2014, 4(3), p 119.

    Google Scholar 

  18. Z.S. Zahari, D. Awang, M.A. Hassan, and W. Harun, Effect of ECAP die angle to the microstructure and mechanical properties of bulk nanostructured Al-6061, IOP Conference Series: Materials Science and Engineering, Vol 469, No 1, IOP Publishing, 2019, p 12054

  19. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi and S.H. Seyyedein, Effect of Ecap Temperature on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy, Prog. Nat. Sci.: Mater., 2016, 26(2), p 182.

    Article  CAS  Google Scholar 

  20. E.A. El-Danaf, M.S. Soliman, A.A. Almajid and M.M. El-Rayes, Enhancement of Mechanical Properties and Grain Size Refinement of Commercial Purity Aluminum 1050 Processed by ECAP, Mater. Sci. Eng. A, 2007, 458(1–2), p 226.

    Article  Google Scholar 

  21. E.A. El-Danaf, Texture Evolution and Fraction of Favorably Oriented Fibers in Commercially Pure Aluminum Processed to 16 ECAP Passes, Mater. Sci. Eng. A, 2008, 492(1–2), p 141.

    Article  Google Scholar 

  22. M.C.V. Vega, B.H. Piva, R.E. Bolmaro, M. Ferrante, and A.M. Kliauga, The Texture Development of ECAP Processed AA1050 Aluminum, before and After a Final Anneal: Effect of the Initial Texture, IOP Conference Series: Materials Science and Engineering, Vol 63, No 1, IOP Publishing, 2014, p 012152

  23. S.N. Alhajeri, N. Gao and T.G. Langdon, Hardness Homogeneity on Longitudinal and Transverse Sections of an Aluminum Alloy Processed by ECAP, Mater. Sci. Eng. A, 2011, 528(10–11), p 3833.

    Article  Google Scholar 

  24. S. Wronski, J. Tarasiuk, B. Bacroix, K. Wierzbanowski and H. Paul, Microstructure Heterogeneity After the ECAP Process and Its Influence on Recrystallization in Aluminium, Mater. Charact., 2013, 78(15), p 60.

    Article  CAS  Google Scholar 

  25. W. Skrotzki, N. Scheerbaum, C.G. Oertel, H.G. Brokmeier, S. Suwas and L.S. Toth, Recrystallization of High-Purity Aluminium During Equal Channel Angular Pressing, Acta Mater., 2007, 55(7), p 2211–2218.

    Article  CAS  Google Scholar 

  26. W.Q. Cao, A. Godfrey, W. Liu and Q. Liu, Annealing Behavior of Aluminum Deformed by Equal Channel Angular Pressing, Mater. Lett., 2003, 57(24), p 3767.

    Article  CAS  Google Scholar 

  27. J.Y. Chang and A. Shan, Intermediate Annealing of Pure Aluminum during Cyclic Equal Channel Angular Pressings, J. Mater. Sci., 2003, 38, p 2613.

    Article  CAS  Google Scholar 

  28. A. Zi and lB. StulikovaSmola, Response of Aluminum Processed by Extrusion Preceded ECAP to Isochronal Annealing, Mater. Sci. Eng. A, 2010, 527(6), p 1469.

    Article  Google Scholar 

  29. M.C.V. Vega, R.E. Bolmaro, M. Ferrante, V.L. Sordi and A.M. Kliauga, The Influence of Deformation Path on Strain Characteristics of AA1050 Aluminium Processed by Equal-Channel Angular Pressing followed by Rolling, Mater. Sci. Eng. A, 2015, 646(14), p 154.

    Article  CAS  Google Scholar 

  30. M. Mhedhbi, M. Khlif and C. Bradai, Investigations of Microstructural and Mechanical Properties Evolution of AA1050 Alloy Sheets Deformed by Cold-Rolling Process and Heat Treatment Annealing, J. Mater. Environ. Sci, 2017, 8(23), p 2967.

    CAS  Google Scholar 

  31. A.P. Zhilyaev, K.O. Ishi, G.I. Raab and T.R. McNelley, Influence of ECAP Processing Parameters on Texture and Microstructure of Commercially Pure Aluminum, Mater. Sci. Eng. A, 2006, 44(1–2), p 245.

    Article  Google Scholar 

  32. J.G. Lenard, Primer on Flat Rolling, Elsevier Science, Amsterdam, 2013.

    Google Scholar 

  33. M. Reihanian, R. Ebrahimi, N. Tsuji and M.M. Moshksar, Analysis of the Mechanical Properties and Deformation Behavior of Nanostructured Commercially Pure Al Processed by Equal Channel Angular Pressing (ECAP), Mater. Sci. Eng. A, 2008, 473(1–2), p 189.

    Article  Google Scholar 

  34. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura and T. Sakai, Effect of Pressing Temperature on Fine-Grained Structure Formation in 7475 Aluminum Alloy During ECAP, Mater. Sci. Eng. A, 2004, 381(1–2), p 121.

    Article  Google Scholar 

  35. R. Lapovok, I. Timokhina, P.W. McKenzie and R. O’Donnell, Processing and Properties of Ultrafine-Grain Aluminium Alloy 6111 Sheet, J. Mater. Process. Technol., 2008, 200(1–2), p 441.

    Article  CAS  Google Scholar 

  36. M. Kawasaki, Z. Horita and T.G. Langdon, Microstructural Evolution in High Purity Aluminum Processed by ECAP, Mater. Sci. Eng. A, 2009, 524(1–2), p 143.

    Article  Google Scholar 

  37. S. Ferrasse, V.M. Segal and F. Alford, Texture Evolution During Equal Channel Angular Extrusion (ECAE): Part II. An Effect of Post-Deformation Annealing, Mater. Sci. Eng. A, 2004, 372(1–2), p 235.

    Article  Google Scholar 

  38. H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj and A. Amirafshar, Combined Effect of Heat Treatment and Rolling on Pre-Strained and SPDed Aluminum Sheet, Mater. Sci. Eng. A, 2014, 612(14), p 371.

    Article  CAS  Google Scholar 

  39. O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press, Boca Raton, FL, 2009.

    Book  Google Scholar 

  40. W. Wang, A.L. Helbert, T. Baudin, F. Brisset and R. Penelle, Reinforcement of the Cube Texture During Recrystallization of a 1050 Aluminum Alloy Partially Recrystallized and 10% Cold-Rolled, Mater. Charact., 2012, 64(27), p 1.

    Article  CAS  Google Scholar 

  41. P. Koprowski, R. Bogucki, M. Bieda, J. Kawałko and K. Sztwiertnia, Thermal Stability of AA1050 Aluminum Alloy After Equal Channel Angular Pressing, Arch. Metal. Matter, 2017, 62(14), p 156.

    Google Scholar 

  42. A. Rosochowski, L. Olejnik and M. Richert, Advanced Methods in Material Forming. D. Banabic Ed., Springer, Berlin, 2007, p 215–232

    Chapter  Google Scholar 

  43. M. Eizadjou, H. Danesh-Manesh and K. Janghorban, Microstructure and Mechanical Properties of Ultra-Fine Grains (UFGs) Aluminum Strips Produced by ARB Process, J. Alloys Compd., 2009, 474(1–2), p 406.

    Article  CAS  Google Scholar 

  44. N. Haghdadi, A. Zarei-Hanzaki and D. Abou-Ras, Microstructure and Mechanical Properties of Commercially Pure Aluminum Processed by Accumulative Back Extrusion, Mater. Sci. Eng. A, 2013, 584(4), p 73.

    Article  CAS  Google Scholar 

  45. P.B. Prangnell, J.R. Bowen and P.J. Apps, Ultra-Fine Grain Structures in Aluminum Alloys by Severe Deformation Processing, Mater. Sci. Eng. A, 2004, 375(1–2), p 178.

    Article  Google Scholar 

  46. J.H. Han, K.H. Oh and J.C. Lee, Effect of Accumulative Strain on Texture Evolution in 1050 Al Alloys Processed by Continuous Confined Strip Shearing, Mater. Sci. Eng. A, 2004, 387(6), p 240.

    Article  Google Scholar 

  47. Q. Liu, X. Huang, D.J. Lloyd and N. Hansen, Microstructure and Strength of Commercial Purity Aluminum (AA 1200) Cold-Rolled to Large Strains, Acta Mater., 2002, 50(4), p 3789.

    Article  CAS  Google Scholar 

  48. W. Kuhlmann-Wilsdorf, Evolution of FCC Deformation Structures in Polyslip, Acta Metall. Mater., 1992, 40(4), p 205.

    Google Scholar 

  49. J.F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012.

    Google Scholar 

  50. F.R. Castro-Fernandez and C.M. Sellars, Static Recrystallisation and Recrystallisation during Hot Deformation of Al-1Mg-1Mn Alloy, Mater. Sci. Technol., 1988, 4(7), p 621.

    Article  CAS  Google Scholar 

  51. H.J. McQueen, O. Knustad, N. Ryum and J.K. Solberg, Microstructural Evolution in Al Deformed to Strains of 60 at 400 °C, Scr. Metall., 1985, 19(1), p 73.

    Article  CAS  Google Scholar 

  52. W. Blum, Q. Zhu, R. Merkel and H.J. McQueen, Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083), Mater. Sci. Eng. A, 1996, 205(1–2), p 23.

    Article  Google Scholar 

  53. M. Bacca, D.R. Hayhurst and R.M. McMeeking, Continuous Dynamic Recrystallization During Severe Plastic Deformation, Mech. Matter, 2015, 90(1), p 148.

    Article  Google Scholar 

  54. A. Mishra, K. Kad, F. Gregori and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(5), p 13.

    Article  CAS  Google Scholar 

  55. T. Sakai, H. Miura, A. Goloborodko and O. Sitdikov, Continuous Dynamic Recrystallization during the Transient Severe Deformation of Aluminum Alloy 7475, Acta Mater., 2009, 57(1), p 153.

    Article  CAS  Google Scholar 

  56. S. Ferrasse, V.M. Segal, S.R. Kalidindi and F. Alford, Texture Evolution during Equal Channel Angular Extrusion: Part I. Effect of Route, Number of Passes and Initial Texture, Mater. Sci. Eng. A, 2004, 368(2), p 28.

    Article  Google Scholar 

  57. A.S. Mohammed-Ahmed, E.A. El-Danaf and A.A. Radwan, A Criterion for Shear Banding Localization in Polycrystalline FCC Metals and Alloys and Critical Working Conditions for Different Microstructural Variables, J. Mater. Process. Technol, 2007, 186(3), p 14.

    Article  Google Scholar 

  58. G.H. Zahid, Y. Huang and P.B. Prangnell, Microstructure and Texture Evolution during Annealing a Cryogenic-SPD Processed Al-Alloy with a Nanoscale Lamellar HAGB Grain Structure, Acta Mater., 2009, 57(12), p 3509.

    Article  CAS  Google Scholar 

  59. I.J. Beyerlein and L.S. Tóth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater. Sci., 2009, 54(4), p 427.

    Article  CAS  Google Scholar 

  60. S.R. Goodman and H. Hu, Texture Transition in Austenitic Stainless Steels, Trans. Metall. Soc. AIME, 1964, 230(4), p 1413.

    CAS  Google Scholar 

  61. H. Hu and R.S. Cline, Temperature Dependence of Rolling Textures in High-Purity Silver, J. Appl. Phys., 1961, 32(5), p 760.

    Article  Google Scholar 

  62. S.R. Goodman and H. Hu, Texture Transition in Copper, Trans. Metall. Soc. AIME, 1963, 227(4), p 627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Ahmadian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, P., Akbarzadeh, A., Asadi, P. et al. Achieving an Optimal Balance of Strength and Elongation in AA 1050 Aluminum Alloy via Equal Channel Angular Pressing, Intermediate Annealing, and Post-Rolling. J. of Materi Eng and Perform 31, 9573–9585 (2022). https://doi.org/10.1007/s11665-022-07009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07009-7

Keywords

Navigation