Skip to main content

3D-ECAP of Square Aluminium Billets

  • Chapter
Advanced Methods in Material Forming

Summary

A way of increasing productivity of Equal Channel Angular Pressing (ECAP) by increasing the number of channel turns in the die is being explored. Unlike in other proposals of this type, the channel passages are not in one plane. This leads to a new concept of 3D-ECAP and a possibility of realising the most desirable deformation route B_C in the die. The paper explains the above concept in detail and discusses the tool design issues. The laboratory trials of the new process are described and results presented. The structure of commercially pure aluminium 1070 subjected to 3D-ECAP is revealed. Basic mechanical properties are specified and conclusions formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber R. E., Dudo T., Yasskin P. B., Hartwig K. T., “Product yield of ECAE processed material”, Ultrafine Grained Materials III, 2004 TMS Annual Meeting, Charlotte, North Carolina, U.S.A., March 14–18, 2004, p. 667–672.

    Google Scholar 

  • Ferrase S., Alford F., Grabmeier S., Düvel A., Zedlitz R., Strothers S., Evans J., Daniels B., Technology white paper, Honeywell International Inc., 2003.

    Google Scholar 

  • Fokine V. A., “The main directions in applied research and development of SPD nanomaterials in Russia”, Nanomaterials by Severe Plastic Deformation, NanoSPD2, Vienna, Austria, December 9–13, 2002, p. 798–803.

    Google Scholar 

  • Komura S., Furukawa M., Horita Z., Nemoto M., Langdon T. G., “Optimizing the procedure of equal-channel angular pressing for maximum superplasticity”, Materials Science and Engineering A, vol. 297, 2001, p. 111–118.

    Article  Google Scholar 

  • Langdon T. G., Furukawa M., Nemoto M., Horita Z., “Using equal-channel angular pressing for refining grain size”, IOM, vol. 52, no. 4, 2000, p. 30–33.

    Google Scholar 

  • Richert M., Stüwe H. P., Richert J., Pippan R., Motz Ch., “Characteristic features of microstructure of AlMg5 deformed to large plastic strain”, Materials Science and Engineering A, vol. 301, 2001, p. 237–243.

    Article  Google Scholar 

  • Rosochowski A., Olejnik L., Richert M., “Channel configuration effects in 3D-ECAP”, Nanomaterials by Severe Plastic Deformation, NanoSPD3, Fukuoka, Japan, September 22–26, 2005, p. 179–184.

    Google Scholar 

  • Rosochowski A., Olejnik L., Richert M., “Metal forming technology for producing bulk nanostructured metals”, Journal of Steel and Related Materials – Steel GRIPS, vol. 2, Suppl. Metal Forming 2004, 2004, p. 35–44.

    Google Scholar 

  • Rosochowski A., Olejnik L., “Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion”, Journal of Materials Processing Technology, vol. 125–126, 2002, p. 309–316.

    Article  Google Scholar 

  • Segal V. M., “Equal channel angular extrusion: from macromechanics to structure formation”, Material Science and Engineering A, vol. 271, 1999, p. 322–333.

    Article  Google Scholar 

  • Segal V. M., Reznikov V. I., Drobyshevskiy A. E., Kopylov V. I., “Plastic working of metals by simple shear”, Russian Metallurgy (Metally), vol. 1, 1981, p. 99–105.

    Google Scholar 

  • Wang Y., Ma E., Valiev R. Z., Zhu Y., “Tough nanostructured metals at cryogenic temperatures”, Advanced Materials, vol. 16 no. 4, 2004, p. 328–331.

    Article  Google Scholar 

  • Wang Y., Chen, M., Zhou F., Ma E., “High tensile ductility in a nanostructured metal”, Nature, vol. 419, 2002, p. 912–914.

    Article  Google Scholar 

  • Yoshimoto S., Miyahara Y., Horita Z., Kawamura Y., “Mechanical properties and microstructure of Mg-Zn-Y alloys processed by ECAE”, Nanomaterials by Severe Plastic Deformation, NanoSPD3, Fukuoka, Japan, September 22–26, 2005, p. 769–774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosochowski, A., Olejnik, L., Richert, M. (2007). 3D-ECAP of Square Aluminium Billets. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69845-0_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-69845-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69844-9

  • Online ISBN: 978-3-540-69845-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics