Skip to main content

Advertisement

Log in

Microstructure and Fatigue Properties of Ti-48Al Alloy Fabricated by the Twin-Wire Plasma Arc Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Due to the inherent temperature brittleness and poor workability, the forming and fabrication of TiAl alloy is extremely difficult. Thus, in recent years, an innovative twin-wire-based plasma arc additive manufacturing (TW-PAAM) technique has been developed to fabricate the Ti-48Al alloy with low cost. In this research, the Ti-48Al alloys are fabricated by the TW-PAAM and the tungsten inert gas welding-based wire and arc additive manufacturing (TIG-WAAM). Afterward, the microstructure, residual stress and fatigue properties are characterized subsequently. The microstructure of the TiAl alloy was found to consist of a dendritic grain region and a fully lamellar colony region. The fully lamellar colonies composed of α2 and γ phases, and the size of the lamellar colonies tends to increase from the upper to the lower. The residual stress value in the TiAl alloy of lower part is higher than the upper part. Additionally, the mean residual stress value of TW-PAAM TiAl alloy (57.6 MPa) is lower than the TIG-WAAM TiAl alloy(68.4 MPa), decreasing by 15.7%. And the fatigue strength of TiAl alloy in the lower part shows poor fatigue properties compared to the upper part, which is mainly attribute to the effect of residual stress and the size of lamellar colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021, with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.W. Kim, Ordered Intermetallic Alloys Part III: Gamma Titanium Aluminides, Jom, 1994, 46(7), p 30–39.

    Article  CAS  Google Scholar 

  2. T. Noda, Application of Cast Gamma TiAl for Automobiles, Intermetallics, 1998, 6(7–8), p 709–713.

    Article  CAS  Google Scholar 

  3. F. Appel, J.D.H. Paul and M. Oehring, Thermophysical Constants, Gamma Titan. Alum. Alloy., 2011, 44, p 25–31.

    Article  Google Scholar 

  4. K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

    Article  Google Scholar 

  5. H. Clemens and S. Mayer, Intermetallic Titanium Aluminides in Aerospace Applications – Processing, Microstructure and Properties, Mater. High Temp., 2016, 33(4–5), p 560–570.

    Article  CAS  Google Scholar 

  6. T.J. Horn and O.L.A. Harrysson, Overview of Current Additive Manufacturing Technologies and Selected Applications, Sci. Prog., 2012, 95(3), p 255–282.

    Article  CAS  Google Scholar 

  7. M. Cisternas Fernández, M. Založnik, H. Combeau, and U. Hecht, Thermosolutal Convection and Macrosegregation during Directional Solidification of TiAl Alloys in Centrifugal Casting. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119698

    Article  Google Scholar 

  8. A. Couret, M. Allen, M.W. Rackel, B. Galy, J.P. Monchoux, V. Güther, F. Pyczak, P. Sallot and M. Thomas, Chemical Heterogeneities in Tungsten Containing TiAl Alloys Processed by Powder Metallurgy, Materialia, 2021, 18(June), p 101147. https://doi.org/10.1016/j.mtla.2021.101147

    Article  CAS  Google Scholar 

  9. X. Gu, F. Cao, N. Liu, G. Zhang, D. Yang, H. Shen, D. Zhang, H. Song, and J. Sun, Microstructural Evolution and Mechanical Properties of a High Yttrium Containing TiAl Based Alloy Densified by Spark Plasma Sintering, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153264

    Article  Google Scholar 

  10. Y. Ma, D. Cuiuri, H. Li, Z. Pan and C. Shen, The Effect of Postproduction Heat Treatment on γ-TiAl Alloys Produced by the GTAW-Based Additive Manufacturing Process, Mater. Sci. Eng. A, 2016, 657, p 86–95. https://doi.org/10.1016/j.msea.2016.01.060

    Article  CAS  Google Scholar 

  11. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35(February), p 127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  12. T. Artaza, A. Suárez, F. Veiga, I. Braceras, I. Tabernero, O. Larrañaga and A. Lamikiz, Wire Arc Additive Manufacturing Ti6Al4V Aeronautical Parts Using Plasma Arc Welding: Analysis of Heat-Treatment Processes in Different Atmospheres, J. Mater. Res. Technol., 2020, 9(6), p 15454–15466.

    Article  CAS  Google Scholar 

  13. W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1–28.

    Article  Google Scholar 

  14. C.S. Wu, L. Wang, W.J. Ren and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85.

    Article  Google Scholar 

  15. L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, Y. Huang and Y. Ding, Fabrication of γ-TiAl Intermetallic Alloy Using the Twin-Wire Plasma Arc Additive Manufacturing Process: Microstructure Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2021, 812(March), p 141056. https://doi.org/10.1016/j.msea.2021.141056

    Article  CAS  Google Scholar 

  16. Y.W. Kim, Intermetallic Alloys Based on Gamma Titanium Aluminide, Jom, 1989, 41(7), p 24–30.

    Article  CAS  Google Scholar 

  17. E. Hamzah, K. Suardi and A. Ourdjini, Effect of Microstructures on the Hydrogen Attack to Gamma Titanium Aluminide at Low Temperature, Mater. Sci. Eng. A, 2005, 397(1–2), p 41–49.

    Article  Google Scholar 

  18. X. Bai, P. Colegrove, J. Ding, X. Zhou, C. Diao, P. Bridgeman and J. roman Hönnige, H. Zhang, and S. Williams, Numerical Analysis of Heat Transfer and Fluid Flow in Multilayer Deposition of PAW-Based Wire and Arc Additive Manufacturing, Int. J. Heat Mass Transf., 2018, 124, p 504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085

    Article  Google Scholar 

  19. Y. Ma, D. Cuiuri, C. Shen, H. Li and Z. Pan, Effect of Interpass Temperature on In-Situ Alloying and Additive Manufacturing of Titanium Aluminides Using Gas Tungsten Arc Welding, Addit. Manuf., 2015, 8, p 71–77. https://doi.org/10.1016/j.addma.2015.08.001

    Article  CAS  Google Scholar 

  20. C. Shen, X. Hua, F. Li, T. Zhang, Y. Li, Y. Zhang, L. Wang, Y. Ding, P. Zhang and Q. Lu, Composition-Induced Microcrack Defect Formation in the Twin-Wire Plasma Arc Additive Manufacturing of Binary TiAl Alloy: An X-Ray Computed Tomography-Based Investigation, J. Mater. Res., 2021 https://doi.org/10.1557/s43578-021-00412-1

    Article  Google Scholar 

  21. Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, Effects of Wire Feed Conditions on in Situ Alloying and Additive Layer Manufacturing of Titanium Aluminides Using Gas Tungsten Arc Welding, J. Mater. Res., 2014, 29(17), p 2066–2071.

    Article  CAS  Google Scholar 

  22. Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, The Effect of Location on the Microstructure and Mechanical Properties of Titanium Aluminides Produced by Additive Layer Manufacturing Using In-Situ Alloying and Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2015, 631, p 230–240. https://doi.org/10.1016/j.msea.2015.02.051

    Article  CAS  Google Scholar 

  23. A. Duarte, F. Viana and H.M.C.M. Santos, As-Cast Titanium Aluminides Microstructure Modification, Mater. Res., 1999, 2(3), p 191–195. https://doi.org/10.1590/S1516-14391999000300013

    Article  CAS  Google Scholar 

  24. L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, Y. Huang, Y. Ding, P. Zhang, Q. Lu, T. Zhang and J. Shang, Twin-Wire Plasma Arc Additive Manufacturing of the Ti–45Al Titanium Aluminide: Processing, microstructures and mechanical properties, Microstruct. Mech. Prop. Intermetall., 2021, 136, p 107277. https://doi.org/10.1016/j.intermet.2021.107277

    Article  CAS  Google Scholar 

  25. J. Xiong, Y. Lei and R. Li, Finite Element Analysis and Experimental Validation of Thermal Behavior for Thin-Walled Parts in GMAW-Based Additive Manufacturing with Various Substrate Preheating Temperatures, Appl. Therm. Eng., 2017, 126, p 43–52. https://doi.org/10.1016/j.applthermaleng.2017.07.168

    Article  Google Scholar 

  26. J.P. Campbell, J.J. Kruzic, S. Lillibridge, K.T. Venkateswara Rao and R.O. Ritchie, On the Growth of Small Fatigue Cracks in γ-Based Titanium Aluminides, Scr. Mater., 1997, 37(5), p 707–712.

    Article  CAS  Google Scholar 

  27. Q.G. Wang, D. Apelian and D.A. Lados, Fatigue Behavior of A356–T6 Aluminum Cast Alloys Part I Effect of Casting Defects, J. Light Met., 2001, 1(1), p 73–84.

    Article  CAS  Google Scholar 

  28. P. Bowen, R.A. Chave and A.W. James, Cyclic Crack Growth in Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192–193(Part 1), p 443–456.

    Article  Google Scholar 

  29. Y. Zhou, J.Q. Wang, B. Zhang, W. Ke and E.H. Han, High-Temperature Fatigue Property of Ti46Al8Nb Alloy with the Fully Lamellar Microstructure, Intermetallics, 2012, 24, p 7–14.

    Article  CAS  Google Scholar 

  30. K.S. Chan and D.S. Shih, Fundamental Aspects of Fatigue and Fracture in a TiAl Sheet Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(1), p 73–87.

    Article  Google Scholar 

  31. V. Recina, High Temperature Low Cycle Fatigue Properties of Two Cast Gamma Titanium, Aluminide Alloys with Refined Microstructure, Mater. Sci. Technol., 2000, 16(3), p 333–340.

    Article  CAS  Google Scholar 

  32. Y. Umakoshi, H.Y. Yasuda and T. Nakano, Plastic Anisotropy and Fatigue of TiAl PST Crystals: A Review, Intermetallics, 1996, 4(SUPPL. 1), p S65–S75. https://doi.org/10.1016/0966-9795(96)00012-X

    Article  CAS  Google Scholar 

  33. V. Recina and B. Karlsson, High Temperature Low Cycle Fatigue Properties of Ti-48Al-2Cr-2Nb Gamma Titanium Aluminides Cast in Different Dimensions, Scr. Mater., 2000, 43, p 609–615.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Shanghai Science and Technology Committee Innovation Grants (nos. 19511106400 and 19511106402), the National Natural Science Foundation of China (no. 52075317), and the State Key Laboratory of Metal Material for Marine Equipment and Application (no. SKLMEA-K201906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lu, Q., Zhang, P. et al. Microstructure and Fatigue Properties of Ti-48Al Alloy Fabricated by the Twin-Wire Plasma Arc Additive Manufacturing. J. of Materi Eng and Perform 31, 8250–8260 (2022). https://doi.org/10.1007/s11665-022-06847-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06847-9

Keywords

Navigation