Skip to main content
Log in

Composition-induced microcrack defect formation in the twin-wire plasma arc additive manufacturing of binary TiAl alloy: An X-ray computed tomography-based investigation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In recent years, an innovative twin-wire plasma arc additive manufacturing (TW-PAAM) process is conducted to the in situ alloying of TiAl alloys. As a newly invented method of TiAl alloy fabrication, the microcrack defect is a great concern. In the present research, two binary TiAl alloys containing different microcrack tendencies, Ti-45Al and Ti-48Al, are fabricated using the TW-PAAM method. To locate possible defects in the as-fabricated alloys, the non-destructive testing X-ray computed tomography is performed. According to the results, under the same TW-PAAM parameter set, microcracks are initiated throughout Ti-45Al while Ti-48Al stays integrated. Also, more α2-Ti3Al are generated in grain boundaries of Ti-45Al than Ti-48Al, thus lead to higher local misorientations and the intergranular microcracks. The clarification of the Al content-induced microcrack generation provides clear improvement direction of the innovative additive manufacturing technique.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. D.M. Dimiduk, Gamma titanium aluminide alloys: an assessment within the competition of aerospace structural materials. Mater. Sci. Eng. A 263, 281–288 (1999)

    Article  Google Scholar 

  2. H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications–processing, microstructure and properties. Mater. High Temp. 33, 560–570 (2016)

    Article  CAS  Google Scholar 

  3. T. Noda, Application of cast gamma TiAl for automobiles. Intermetallics 6, 709–713 (1998)

    Article  CAS  Google Scholar 

  4. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics 4, 429–440 (1996)

    Article  CAS  Google Scholar 

  5. M.T. Jovanović, B. Dimicic, I. Bobic, S. Zec, V. Maksimovic, Microstructure and mechanical properties of precision cast TiAl turbocharger wheel. J. Mater. Process. Technol. 167, 14–21 (2005)

    Article  Google Scholar 

  6. V. Güther, M. Allen, J. Klose, H. Clemens, Metallurgical processing of titanium aluminides on industrial scale. Intermetallics 103, 12–22 (2018)

    Article  Google Scholar 

  7. R.A. Harding, Recent developments in the induction skull melting and investment casting of titanium aluminides. Kovove Materialy 42, 225–241 (2004)

    CAS  Google Scholar 

  8. P. Fu, X. Kang, Y. Ma, K. Liu, D. Li, Y. Li, Centrifugal casting of TiAl exhaust valves. Intermetallics 16, 130–138 (2008)

    Article  CAS  Google Scholar 

  9. C. Kenel, G. Dasargyri, T. Bauer, A. Colella, A.B. Spierings, C. Leinenbach, K. Wegener, Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures. Mater. Des. 134, 81–90 (2017)

    Article  CAS  Google Scholar 

  10. W. Li, J. Liu, Y. Zhou, S. Li, S. Wen, Q. Wei, C. Yan, Y. Shi, Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties. J. Alloys Compd. 688, 626–636 (2016)

    Article  CAS  Google Scholar 

  11. A. Couret, G. Molenat, J. Galy, M. Thomas, Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics 16, 1134–1141 (2008)

    Article  CAS  Google Scholar 

  12. A. Sharman, J. Hughes, K. Ridgway, Characterisation of titanium aluminide components manufactured by laser metal deposition. Intermetallics 93, 89–92 (2018)

    Article  CAS  Google Scholar 

  13. H. Qu, H. Wang, Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys. Mater. Sci. Eng. A 466, 187–194 (2007)

    Article  Google Scholar 

  14. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 58, 1887–1894 (2010)

    Article  CAS  Google Scholar 

  15. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics 19, 776–781 (2011)

    Article  CAS  Google Scholar 

  16. H. Tang, G. Yang, W. Jia, W. He, S. Lu, M. Qian, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Mater. Sci. Eng. A 636, 103–107 (2015)

    Article  CAS  Google Scholar 

  17. X. Shi, H. Wang, W. Feng, Y. Zhang, S. Ma, J. Wei, The crack and pore formation mechanism of Ti–47Al–2Cr–2Nb alloy fabricated by selective laser melting. Int. J. Refract. Met. Hard Mater. 91, 105247 (2020)

    Article  CAS  Google Scholar 

  18. P. Gao, W. Huang, H. Yang, G. Jing, Q. Liu, G. Wang, Z. Wang, X. Zeng, Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5 Y alloy produced by selective laser melting. J. Mater. Sci. Technol. 39, 144–154 (2020)

    Article  CAS  Google Scholar 

  19. R. Gerling, H. Clemens, F. Schimansky, Powder metallurgical processing of intermetallic gamma titanium aluminides. Adv. Eng. Mater. 6, 23–38 (2004)

    Article  CAS  Google Scholar 

  20. K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 55, 1–16 (2012)

    Article  Google Scholar 

  21. Y. Ma, Fabrication of gamma titanium aluminide alloys by gas tungsten arc welding-based additive layer manufacturing, University of Wollongong Thesis Collections, 2015

  22. Y. Ma, D. Cuiuri, N. Hoye, H. Li, Z. Pan, The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater. Sci. Eng. A 631, 230–240 (2015)

    Article  CAS  Google Scholar 

  23. C. Shen, Z. Pan, D. Cuiuri, B. Dong, H. Li, In-depth study of the mechanical properties for Fe 3 Al based iron aluminide fabricated using the wire-arc additive manufacturing process. Mater. Sci. Eng. A 669, 118–126 (2016)

    Article  CAS  Google Scholar 

  24. Y. Ma, D. Cuiuri, C. Shen, H. Li, Z. Pan, Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Addit. Manuf. 8, 71–77 (2015)

    CAS  Google Scholar 

  25. J. Wang, Z. Pan, G. Yang, J. Han, X. Chen, H. Li, Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing. Mater. Sci. Eng. A 749, 218–222 (2019)

    Article  CAS  Google Scholar 

  26. C. Shen, X. Hua, M. Reid, K.D. Liss, G. Mou, Z. Pan, Y. Huang, H. Li, Thermal induced phase evolution of Fe–Fe3Ni functionally graded material fabricated using the wire-arc additive manufacturing process: an in-situ neutron diffraction study. J Alloys Compds. 826, 154097 (2020)

    Article  CAS  Google Scholar 

  27. V.K. Balla, M. Das, A. Mohammad, A.M. Al-Ahmari, Additive manufacturing of γ-TiAl: processing, microstructure, and properties. Adv. Eng. Mater. 18, 1208–1215 (2016)

    Article  CAS  Google Scholar 

  28. H. Yue, H. Peng, R. Li, Y. Su, Y. Zhao, K. Qi, Y. Chen, Selective electron beam melting of tial alloy: metallurgical defects, tensile property, and determination of process window. Adv. Eng. Mater. 22, 2000194 (2020)

    Article  CAS  Google Scholar 

  29. H. Yue, H. Peng, R. Li, K. Qi, L. Zhang, J. Lin, Y. Su, Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting. Mater. Sci. Eng. A 803, 140473 (2020)

    Article  Google Scholar 

  30. Y. Ma, D. Cuiuri, H. Li, Z. Pan, C. Shen, The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater. Sci. Eng. A 657, 86–95 (2016)

    Article  CAS  Google Scholar 

  31. C. Shen, M. Reid, K.D. Liss, Z. Pan, Y. Ma, D. Cuiuri, Neutron diffraction residual stress determination in Fe3Al based iron aluminide components fabriacted using wire-arc additive manufacturing (WAAM). Addit. Manufac. 29, 100774 (2019)

    Article  CAS  Google Scholar 

  32. J. Wang, Z. Pan, Y. Ma, Y. Lu, C. Shen, D. Cuiuri, H. Li, Characterization of wire arc additively manufactured titanium aluminide functionally graded material: microstructure, mechanical properties and oxidation behaviour. Mater. Sci. Eng. A 734, 110–119 (2018)

    Article  CAS  Google Scholar 

  33. C. Shen, Z. Pan, D. Cuiuri, S. van Duin, D. Luo, B. Dong, H. Li, Influences of postproduction heat treatment on Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process. Int. J. Adv. Manuf. Technol. 97, 335–344 (2018)

    Article  Google Scholar 

  34. C. Shen, Z. Pan, Y. Ma, D. Cuiuri, H. Li, Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Addit. Manuf. 7, 20–26 (2015)

    CAS  Google Scholar 

  35. C. Shen, K.D. Liss, M. Reid, Z. Pan, X. Hua, F. Li, G. Mou, Y. Huang, Y. Zhu, H. Li, Fabrication of FeNi intermetallic using the wire-arc additive manufacturing process: a feasibility and neutron diffraction phase characterization study. J. Manuf. Process. 57, 691–699 (2020)

    Article  Google Scholar 

  36. Y. Zhang, Y. Yang, W. Zhang, S. Na, Advanced welding manufacturing: a brief analysis and review of challenges and solutions. J. Manuf. Sci. Eng. 142, 110816-1-110816–33 (2020)

    Article  Google Scholar 

  37. J.N. DuPont, A.R. Marder, Thermal efficiency of arc welding processes. Weld. J. 74, 406s–416s (1995)

    Google Scholar 

  38. Y. Zhang, Y. Liu, Control of dynamic keyhole welding process. Automatica 43, 876–884 (2007)

    Article  Google Scholar 

  39. S. Chen, F. Jiang, J. Zhang, Y. Zhang, P. Shun, Measurement and analysis of plasma arc components. J. Manuf. Sci. Eng. 137, 011006-1-011006–9 (2015)

    Article  Google Scholar 

  40. R. Gupta, R. Reddy, M. Mukherjee, Key-hole plasma arc welding of 8 mm thick maraging steel: a comparison with multi-pass GTAW. Weld. World 56, 69–75 (2012)

    Article  CAS  Google Scholar 

  41. M. Schnick, U. Fussel, A. Spille-Kohoff, Numerical investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (PAW). Weld. World 54, R87–R96 (2010)

    Article  CAS  Google Scholar 

  42. K. Tseng, N. Wang, Research on bead width and penetration depth of multicomponent flux-aided arc welding of grade 316 L stainless steel. Powder Technol. 311, 514–521 (2017)

    Article  CAS  Google Scholar 

  43. L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, Y. Huang, Y. Ding, Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: microstructure evolution and mechanical properties. Mater. Sci. Eng. A 812, 141056 (2021)

    Article  CAS  Google Scholar 

  44. J. Chen, C. Pan, Welding of Ti-6Al-4V alloy using dynamically controlled plasma arc welding process. Trans. Nonferrous Met. Soc. China 21, 1506–1512 (2011)

    Article  CAS  Google Scholar 

  45. Y. Kim, Intermetallic alloys based on gamma titanium aluminide. J. Miner. Met. Mater. Soc. 41, 24–30 (1989)

    Article  CAS  Google Scholar 

  46. C. Mercer, W. Soboyejo, Fatigue crack growth in cast gamma titanium aluminides. Acta Mater. 45, 4385–4396 (1997)

    Article  CAS  Google Scholar 

  47. E. Hamzah, K. Suardi, A. Ourdjini, Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature. Mater. Sci. Eng. A 397, 41–49 (2005)

    Article  Google Scholar 

  48. K. Chan, Y. Kim, Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall. Trans. A 23, 1663–1677 (1992)

    Article  Google Scholar 

  49. B.A. Simkin, B.C. Ng, M.A. Crimp, T.R. Bieler, Crack opening due to deformation twin shear at grain boundaries in near-γ TiAl. Intermetallics 15, 55–60 (2007)

    Article  CAS  Google Scholar 

  50. J. Kuang, R. Harding, J. Campbell, Microstructures and properties of investment castings of γ-titanium aluminide. Mater. Sci. Eng. A 329, 31–37 (2002)

    Article  Google Scholar 

  51. S. Wu, D. Liu, J. Guo, H. Fu, Modeling of solidification grain structure for Ti-45% Al alloy ingot by cellular automaton. Trans. Nonferrous Met. Soc. China 15, 291–295 (2005)

    CAS  Google Scholar 

  52. W. Wang, Y. Ma, B. Chen, M. Gao, K. Liu, Y. Li, Solidification features of Ti45Al alloys with different boron addition. J. Mater. Sci. Technol. 25, 814–818 (2009)

    CAS  Google Scholar 

  53. H. Wang, D. Zhu, C. Zou, Z. Wei, Microstructure and nanohardness of Ti-48% Al alloy prepared by rapid solidification under different cooling rates. Trans. Nonferrous Met. Soc. China 21, s328–s332 (2011)

    Article  Google Scholar 

  54. D. Davidson, J. Campbell, R. Page, The initiation and growth of fatigue cracks in a titanium aluminide alloy. Metall. Trans. A 22, 377–391 (1991)

    Article  Google Scholar 

  55. W.E. Voice, M. Henderson, E.F.J. Shelton, X. Wu, Gamma titanium aluminide, TNB. Intermetallics 13, 959–964 (2005)

    Article  CAS  Google Scholar 

  56. B. Gao, H. Peng, Y. Liang, J. Lin, B. Chen, Electron beam melted TiC/high Nb-TiAl nanocomposite: microstructure and mechanical property. Mater. Sci. Eng. A 811, 141059 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Science and Technology Commission of Shanghai Municipality (STCSM, Funding No. 19511106400, “Sailing Program” No. 19YF1422700), and National Natural Science Foundation of China (NSFC, Funding No. 51901136).

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Hua, X., Li, F. et al. Composition-induced microcrack defect formation in the twin-wire plasma arc additive manufacturing of binary TiAl alloy: An X-ray computed tomography-based investigation. Journal of Materials Research 36, 4974–4985 (2021). https://doi.org/10.1557/s43578-021-00412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00412-1

Keywords

Navigation