Skip to main content
Log in

Fatigue Crack Growth on Flash Butt Welded and Laser Beam Welded Joints in a High-Strength Low-Alloy Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High strength low-alloy (HSLA) steels have been employed in the automotive industries to produce chassis, part of suspensions, and truck wheels, among others. They present good strength and mechanical toughness, in addition to good formability and weldability. However, good weldability depends on the welding process and parameters. For mechanical components with occurrence of cracks, fatigue life can be quantified by the fatigue crack growth stage. This paper aims to evaluate the fatigue crack growth in HSLA steel plates welded by flash butt welding and laser beam welding. The different welding processes and welding parameters used resulted in their distinct microstructures. The different microstructures showed significant differences in hardness; however, they showed no significant differences in fatigue crack growth. Moreover, the weld beads showed higher resistance to fatigue crack growth when compared to the base metal. For cracks propagating across the weld beads obtained by laser beam welding, with crack initiating at the base metal and growing toward the heat-affected zone and weld bead, a drop in the fatigue crack growth rate was observed as the crack tip approached the microstructure gradient found between these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. European Parliament, “Reducing Carbon Emissions: EU Targets and Measures,” News European Parliament., 2019, pp. 1–3, https://www.europarl.europa.eu/pdfs/news/expert/2018/3/story/20180305STO99003/20180305STO99003_en.pdf.

  2. C.I. Garcia, High Strength Low Alloyed (HSLA) Steels, Automotive Steels: Design, Metallurgy, Processing and Applications, Elsevier, 2017, p 145–167, doi:https://doi.org/10.1016/B978-0-08-100638-2.00006-7.

  3. P. Lu, Z. Xu, K. Jiang, F. Ma and Y. Shu, Influence of Flash Butt Welding Parameters on Microstructure and Mechanical Properties of HSLA 590CL Welded Joints in Wheel Rims, J. Mater. Res., 2017, 32(4), p 831–842. https://doi.org/10.1557/jmr.2016.509

    Article  CAS  Google Scholar 

  4. Z. Xu, P. Lu, and Y. Shu, Microstructure and Fracture Mechanism of a Flash Butt Welded 380CL Steel, Eng. Fail. Anal., Elsevier Inc., 2016, 62, pp. 199–207, doi:https://doi.org/10.1016/j.engfailanal.2016.02.005.

  5. K. Min, K. Kim and S. Kang, A Study on Resistance Welding in Steel Sheets Using a Tailor-Welded Blank (1st Report), J. Mater. Process. Technol., 2000, 101(1–3), p 186–192. https://doi.org/10.1016/S0924-0136(00)00476-3

    Article  Google Scholar 

  6. Y. Ichiyama and S. Kodama, Flash-Butt Welding of High Strength Steels, Nippon Steel Tech. Rep., 2007, 95, p 81–87.

    Google Scholar 

  7. C. Xi, D. Sun, Z. Xuan, J. Wang and G. Song, Microstructures and Mechanical Properties of Flash Butt Welded High Strength Steel Joints, Mater. Des., 2016, 96, p 506–514. https://doi.org/10.1016/j.matdes.2016.01.129

    Article  CAS  Google Scholar 

  8. L. Li, R. Eghlio and S. Marimuthu, Laser Net Shape Welding, CIRP Ann., 2011, 60(1), p 223–226. https://doi.org/10.1016/j.cirp.2011.03.066

    Article  Google Scholar 

  9. A.P. Mackwood and R.C. Crafer, Thermal Modelling of Laser Welding and Related Processes: A Literature Review, Opt. Laser Technol., 2005, 37(2), p 99–115. https://doi.org/10.1016/j.optlastec.2004.02.017

    Article  Google Scholar 

  10. D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675. https://doi.org/10.1016/j.matdes.2013.04.076

    Article  CAS  Google Scholar 

  11. B. Chung, S. Rhee and C. Lee, The Effect of Shielding Gas Types on CO2 Laser Tailored Blank Weldability of Low Carbon Automotive Galvanized Steel, Mater. Sci. Eng. A, 1999, 272(2), p 357–362. https://doi.org/10.1016/S0921-5093(99)00499-2

    Article  Google Scholar 

  12. M. Carboni, S. Beretta and A. Finzi, Defects and In-Service Fatigue Life of Truck Wheels, Eng. Fail. Anal., 2003, 10(1), p 45–57. https://doi.org/10.1016/S1350-6307(02)00036-5

    Article  Google Scholar 

  13. L.H.S. Barbosa, P.J. Modenesi, L.B. Godefroid, and A.R. Arias, Fatigue Crack Growth Rates on the Weld Metal of High Heat Input Submerged Arc Welding, Int. J. Fatigue, Elsevier, 2019, 119(April 2018), pp. 43–51, doi:https://doi.org/10.1016/j.ijfatigue.2018.09.020.

  14. J. Ni, Z. Li, J. Huang, and Y. Wu, Strengthening Behavior Analysis of Weld Metal of Laser Hybrid Welding for Microalloyed Steel, Mater. Des., Elsevier Ltd, 2010, 31(10), pp. 4876–4880, doi:https://doi.org/10.1016/j.matdes.2010.05.034.

  15. D.M. Viano, N.U. Ahmed and G.O. Schumann, Influence of Heat Input and Travel Speed on Microstructure and Mechanical Properties of Double Tandem Submerged Arc High Strength Low Alloy Steel Weldments, Sci. Technol. Weld. Join., 2000, 5(1), p 26–34. https://doi.org/10.1179/stw.2000.5.1.26

    Article  CAS  Google Scholar 

  16. J. Neves and A. Loureiro, Fracture Toughness of Welds—Effect of Brittle Zones and Strength Mismatch, J. Mater. Process. Technol., 2004, 153–154(1–3), p 537–543. https://doi.org/10.1016/j.jmatprotec.2004.04.120

    Article  CAS  Google Scholar 

  17. T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Fracture Toughness of ISO 3183 X80M (API 5L X80) Steel Friction Stir Welds, Eng. Fract. Mech., Elsevier Ltd, 2010, 77(15), pp. 2937–2945, doi:https://doi.org/10.1016/j.engfracmech.2010.07.022.

  18. X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang and C.J. Shang, Influence of Welding Pass on Microstructure and Toughness in the Reheated Zone of Multi-Pass Weld Metal of 550 MPa Offshore Engineering Steel, Mater. Sci. Eng. A, 2017, 702(June), p 196–205. https://doi.org/10.1016/j.msea.2017.06.081

    Article  CAS  Google Scholar 

  19. M.C. Zhao, K. Yang and Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335, p 14–20. https://doi.org/10.1016/S0921-5093(01)01904-9

    Article  Google Scholar 

  20. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, Effect of Welding Processes and Consumables on Fatigue Crack Growth Behaviour of Armour Grade Quenched and Tempered Steel Joints, Def. Technol., 2014, 10(1), pp. 47–59, doi:https://doi.org/10.1016/j.dt.2014.01.005.

  21. R. Oyyaravelu, P. Kuppan, and N. Arivazhagan, Metallurgical and Mechanical Properties of Laser Welded High Strength Low Alloy Steel, J. Adv. Res., Cairo University, 2016, 7(3), pp. 463–472, doi:https://doi.org/10.1016/j.jare.2016.03.005.

  22. R. Ramesh, I. Dinaharan, R. Ravikumar, and E.T. Akinlabi, Microstructural Characterization and Tensile Behavior of Nd:YAG Laser Beam Welded Thin High Strength Low Alloy Steel Sheets, Mater. Sci. Eng. A, Elsevier B.V., 2020, 780(March), pp. 139178, doi:https://doi.org/10.1016/j.msea.2020.139178.

  23. R. Palanivel, I. Dinaharan and R.F. Laubscher, Microstructure and Mechanical Behavior of Nd:YAG Laser Beam Welded High Strength Low Alloy Steel Joints, Optik (Stuttg), Elsevier, 2019, 2020(208), 164050. https://doi.org/10.1016/j.ijleo.2019.164050

    Article  CAS  Google Scholar 

  24. ASTM-E384, Knoop and Vickers Hardness of Materials, ASTM Stand., 2012, pp. 1–43.

  25. ASTM E647−13, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Am. Soc. Test. Mater., 2014, i, pp. 1–50.

  26. K.E. Easterling, Solidification Microstructure of Fusion Welds, Mater. Sci. Eng., 1984, 65(1), p 191–198. https://doi.org/10.1016/0025-5416(84)90212-X

    Article  CAS  Google Scholar 

  27. H.K.D.H. Bhadeshia and L.E. Svensson, Modelling the Evolution of Microstructure in Steel Weld Metal, Math. Model. Weld Phenom., 1993, pp.109–182.

  28. G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A, 1999, 273–275, p 40–57. https://doi.org/10.1016/S0921-5093(99)00288-9

    Article  Google Scholar 

  29. A.F. Hobbacher, “Recommendations for Fatigue Design of Welded Joints and Components,” (Cham), Springer International Publishing, 2016, Doi:https://doi.org/10.1007/978-3-319-23757-2

  30. R. Pamnani, T. Jayakumar, M. Vasudevan, and T. Sakthivel, Investigations on the Impact Toughness of HSLA Steel Arc Welded Joints, J. Manuf. Process., The Society of Manufacturing Engineers, 2016, 21, pp. 75–86, doi:https://doi.org/10.1016/j.jmapro.2015.11.007.

  31. L. Lan, X. Kong, C. Qiu, and D. Zhao, Influence of Microstructural Aspects on Impact Toughness of Multi-Pass Submerged Arc Welded HSLA Steel Joints, Mater. Des., Elsevier Ltd, 2016, 90, p 488–498, Doi:https://doi.org/10.1016/j.matdes.2015.10.158.

  32. P. Sundaram, R.K. Pandey, and A.N. Kumar, Effect of the Welding Process and Heat Input on the Fracture Toughness of Welded Joints in High Strength Low Alloy Steel, Mater. Sci. Eng., 1987, 91(C), p 29–38, doi:https://doi.org/10.1016/0025-5416(87)90280-1.

  33. H.K. Lee, K.S. Kim and C.M. Kim, Fracture Resistance of a Steel Weld Joint under Fatigue Loading, Eng. Fract. Mech., 2000, 66(4), p 403–419. https://doi.org/10.1016/S0013-7944(00)00017-5

    Article  Google Scholar 

  34. S. Ravi, V. Balasubramanian, and S. Nemat Nasser, Effect of Mis-Match Ratio (MMR) on Fatigue Crack Growth Behaviour of HSLA Steel Welds, Eng. Fail. Anal., 2004, 11(3), pp. 413–428, Doi:https://doi.org/10.1016/j.engfailanal.2003.05.013.

  35. R.A. Ricks, P.R. Howell and G.S. Barritte, The Nature of Acicular Ferrite in HSLA Steel Weld Metals, J. Mater. Sci., 1982, 17(3), p 732–740. https://doi.org/10.1007/BF00540369

    Article  CAS  Google Scholar 

  36. S. Bhambri, V. Singh, and G. Jayaraman, The Effect of Microstructure on Stage-II Fatigue Crack Growth Rates in 2.5 NiCrMoV Steel, Int. J. Fatigue, 1989, 11(1), pp. 51–54, Doi:https://doi.org/10.1016/0142-1123(89)90047-9.

  37. Z. Han, H. Luo, Y. Zhang, and J. Cao, Effects of Micro-Structure on Fatigue Crack Propagation and Acoustic Emission Behaviors in a Micro-Alloyed Steel, Mater. Sci. Eng. A, Elsevier, 2013, 559, pp. 534–542, Doi:https://doi.org/10.1016/j.msea.2012.08.138.

  38. S. Li, Y. Kang, G. Zhu, and S. Kuang, Microstructure and Fatigue Crack Growth Behavior in Tungsten Inert Gas Welded DP780 Dual-Phase Steel, Mater. Des., Elsevier B.V., 2015, 85, p 180–189, Doi:https://doi.org/10.1016/j.matdes.2015.06.083.

  39. M.P. Nascimento, C.C. Batista, B.A. Sorrija, and H.J.C. Voorwald, Fatigue Crack Growth Investigation on a Maintenance Welding Repair Applied on a High Responsibility Airframe, Procedia Mater. Sci., Elsevier B.V., 2014, 3, pp. 744–749, Doi:https://doi.org/10.1016/j.mspro.2014.06.122.

  40. V. Balasubramanian and B. Guha, Effect of Welding Processes on Toe Cracking Behaviour of Pressure Vessel Grade Steel, Eng. Fail. Anal., 2004, 11(4), p 575–587. https://doi.org/10.1016/j.engfailanal.2003.09.005

    Article  CAS  Google Scholar 

  41. S. Li, Y. Kang, G. Zhu, and S. Kuang, Microstructure and Fatigue Crack Growth Behavior in Tungsten Inert Gas Welded DP780 Dual-Phase Steel, Mater. Des., Elsevier B.V., 2015, 85, pp. 180–189, doi:https://doi.org/10.1016/j.matdes.2015.06.083.

  42. L. Tsay, C. Chung and C. Chen, Fatigue Crack Propagation of D6AC Laser Welds, Int. J. Fatigue, 1997, 19(1), p 25–31. https://doi.org/10.1016/S0142-1123(96)00049-7

    Article  CAS  Google Scholar 

  43. A. Trudel, M. Lévesque, and M. Brochu, Microstructural Effects on the Fatigue Crack Growth Resistance of a Stainless Steel CA6NM Weld, Eng. Fract. Mech., Elsevier Ltd, 2014, 115, p 60–72, doi:https://doi.org/10.1016/j.engfracmech.2013.11.013.

  44. S. Zhang, J. Xie, Q. Jiang, X. Zhang, C. Sun, and Y. Hong, Fatigue Crack Growth Behavior in Gradient Microstructure of Hardened Surface Layer for an Axle Steel, Mater. Sci. Eng. A, Elsevier B.V., 2017, 700(February), pp. 66–74, doi:https://doi.org/10.1016/j.msea.2017.05.104.

  45. L. Tsay, Y. Chen and S. Chan, Sulfide Stress Corrosion Cracking and Fatigue Crack Growth of Welded TMCP API 5L X65 Pipe-Line Steel, Int. J. Fatigue, 2001, 23(2), p 103–113. https://doi.org/10.1016/S0142-1123(00)00081-5

    Article  CAS  Google Scholar 

  46. G. Padmanaban, V. Balasubramanian, and G.M. Reddy, Fatigue Crack Growth Behaviour of Pulsed Current Gas Tungsten Arc, Friction Stir and Laser Beam Welded AZ31B Magnesium Alloy Joints, J. Mater. Process. Technol., Elsevier B.V., 2011, 211(7), pp. 1224–1233, doi:https://doi.org/10.1016/j.jmatprotec.2011.02.003.

  47. E.M. Anawa and A.G. Olabi, Control of Welding Residual Stress for Dissimilar Laser Welded Materials, J. Mater. Process. Technol., 2008, 204(1–3), p 22–33. https://doi.org/10.1016/j.jmatprotec.2008.03.047

    Article  CAS  Google Scholar 

  48. N. Ma, L. Li, H. Huang, S. Chang, and H. Murakawa, Residual Stresses in Laser-Arc Hybrid Welded Butt-Joint with Different Energy Ratios, J. Mater. Process. Technol., Elsevier B.V., 2015, 220, pp. 36–45, doi:https://doi.org/10.1016/j.jmatprotec.2014.09.024.

Download references

Acknowledgments

The authors are thankful to company IOCHPE-MAXION for making the steel plates available. To Eng. MSc. Carla I.S. Maciel for collaboration in some of the FCG tests conducted in this work. H.V. Ribeiro also acknowledges the Coordination of Superior Level Staff Improvement (CAPES) for the scholarship. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Varella Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, H.V., Lima, M.S.F., Marcomini, J.B. et al. Fatigue Crack Growth on Flash Butt Welded and Laser Beam Welded Joints in a High-Strength Low-Alloy Steel. J. of Materi Eng and Perform 31, 7686–7694 (2022). https://doi.org/10.1007/s11665-022-06795-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06795-4

Keywords

Navigation