Skip to main content

Advertisement

Log in

Fracture and Elastoplastic Behavior of Polymer-Carbon Nanotube Composites under Thermomechanical Environment: An Integrated Dual-Scale Modeling and Experimental Study

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, a dual-scale modeling approach is established to predict polymer-CNT composites’ elastic and thermal properties. The standard computational platform, i.e., DIGIMAT, was used to execute the mesoscale modeling. A 3D random representative volume element model in conjunction with the mean-field homogenization method is developed for the mesoscale computational analysis. With the assumption of perfect bonding, mesoscale modeling reveals the composites’ orthotropic elastic and thermal nature. Periodic boundary conditions were imposed to obtain the orthotropic nature at the mesoscale. The fracture toughness (mode-I stress intensity factor, KI) of the composites was studied at a macroscale using the mesoscale modeling’s orthotropic properties. The computational Young’s modulus and fracture toughness were found in good agreement with the experimental results. The experimental Young’s modulus of HDPE and LDPE composites has shown a variation from 7.26 ± 1.81 to 3.86 ± 1.44, and 3.81 ± 0.57 to 0.92 ± 0.32 GPa, respectively, with an increase in environmental temperature from 25 to 100 °C. The experimental fracture toughness has varied from 1.81 ± 0.09 to 0.26 ± 0.03, and 1.49 ± 0.12 to 0.07 ± 0.01 MPa-m1/2, respectively, for HDPE and LDPE composites, with an increase in environmental temperature from 25 to 100 °C. A statistical analysis (Weibull distribution) has also been performed to investigate the considered composites’ strength. The study reveals that the temperature has a noticeable effect on the softening, reducing the composites’ strength. Fractographic analysis on the tested composites using scanning electron microscopy reveals the composites’ failure due to the debonding of CNTs, softening of the matrix, formation of holes, and rough patches. The obtained numerical results can provide a suitable reference to study the fracture problems in other polymer nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Allahbakhsh, PVC/Rice Straw/SDBS-Modified Graphene Oxide Sustainable Nanocomposites: Melt Mixing Process and Electrical Insulation Characteristics, Compos. Part A Appl. Sci. Manuf., 2020, 134, p 105902.

    Article  CAS  Google Scholar 

  2. K. Palani Kumar, A. Shadrach Jeya Sekaran, L. Dinesh, D. Hari Prasad and K. Deepak kumar, Natural Sisal Fiber-Based Woven Glass Hybrid Polymer Composites for Mono Leaf Spring: Experimental and Numerical Analysis, Prog. Rubber, Plast. Recycl. Technol., 2020 https://doi.org/10.1177/1477760620918605

    Article  Google Scholar 

  3. J. Agarwal, S. Sahoo, S. Mohanty and S.K. Nayak, Progress of Novel Techniques for Lightweight Automobile Applications through Innovative Eco-Friendly Composite Materials: A Review, J. Thermoplast. Compos. Mater., 2020, 33(7), p 978–1013. https://doi.org/10.1177/0892705718815530

    Article  CAS  Google Scholar 

  4. K.V. Balaji, K. Shirvanimoghaddam, G.S. Rajan, A.V. Ellis and M. Naebe, Surface Treatment of Basalt Fiber for Use in Automotive Composites”, Mater. Today Chem., 2020, 17, p 100334.

    Article  Google Scholar 

  5. H. KardanMoghaddam, M. Maraki and A. Rajaei, Graphene-Reinforced Polymeric Nanocomposites in Computer and Electronics Industries, Facta Univ. - Ser. Electron. Energ., 2020, 33(3), p 351–378.

    Article  Google Scholar 

  6. N.A. MohdRadzuan, D. Tholibon, A.B. Sulong, N. Muhamad and C.H.C. Haron, New Processing Technique for Biodegradable Kenaf Composites: A Simple Alternative to Commercial Automotive Parts, Compos. Part B Eng., 2020, 184, p 107644.

    Article  CAS  Google Scholar 

  7. S. Wilczewski, K. Skórczewska, J. Tomaszewska, K. Lewandowski, J. Szulc and T. Runka, Manufacturing Homogenous PVC/Graphene Nanocomposites Using a Novel Dispersion Agent, Polym. Test., 2020, 91, p 106868.

    Article  CAS  Google Scholar 

  8. S. Clifton, B.H.S. Thimmappa, R. Selvam and B. Shivamurthy, Polymer Nanocomposites for High-Velocity Impact Applications-A Review, Composites Communications, 2020, 17, p 72–86.

    Article  Google Scholar 

  9. O.T. Adesina, E.R. Sadiku, T. Jamiru, O.S. Adesina, O.F. Ogunbiyi, B.A. Obadele and S. Salifu, Polylactic Acid/Graphene Nanocomposite Consolidated by SPS Technique, J. Mater. Res. Technol., 2020, 9(5), p 11801–11812.

    Article  CAS  Google Scholar 

  10. S. Yeh, C. Su, J. Huang, M. Ke, D. Bogale, R. Anbarasan, K. Tung and S. Wang, Fabrication of Polystyrene/Carbon Nanocomposites with Superior Mechanical Properties, Polym. Eng. Sci., 2020, 60(8), p 2046–2056. https://doi.org/10.1002/pen.25451

    Article  CAS  Google Scholar 

  11. N. Pundhir, S. Zafar and H. Pathak, Performance Evaluation of HDPE/MWCNT and HDPE/Kenaf Composites, J. Thermoplast. Compos. Mater, 2019, 34(10), p 089270571986827.

    Google Scholar 

  12. M. Kamkar, S.M. Nourin Sultana, S. Patangrao Pawar, A. Eshraghian, E. Erfanian and U. Sundararaj, The Key Role of Processing in Tuning Nonlinear Viscoelastic Properties and Microwave Absorption in CNT-Based Polymer Nanocomposites, Mater. Today Commun., 2020, 24, p 101010.

    Article  CAS  Google Scholar 

  13. M.K. Singh and S. Zafar, Development and Mechanical Characterization of Microwave-Cured Thermoplastic Based Natural Fibre Reinforced Composites, J. Thermoplast. Compos. Mater., 2018, 32(10), p 1427–1442. https://doi.org/10.1177/0892705718799832

    Article  CAS  Google Scholar 

  14. M.K. Singh and S. Zafar, Influence of Microwave Power on Mechanical Properties of Microwave-Cured Polyethylene/Coir Composites, J. Nat. Fibers, 2018 https://doi.org/10.1080/15440478.2018.1534192

    Article  Google Scholar 

  15. M.K. Singh, S. Zafar and M. Talha, Development of Porous Bio-Composites through Microwave Curing for Bone Tissue Engineering, Mater. Today Proc., 2019, 18, p 731–739. https://doi.org/10.1016/j.matpr.2019.06.478

    Article  CAS  Google Scholar 

  16. M.K. Singh, S. Zafar and M. Talha, Development and Characterisation of Poly-L-Lactide-Based Foams Fabricated through Microwave-Assisted Compression Moulding, J. Cell. Plast., 2019, 55(5), p 523–541.

    Article  CAS  Google Scholar 

  17. R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  18. H. Jung, H.K. Choi, Y. Oh, H. Hong and J. Yu, Enhancement of Thermo-Mechanical Stability for Nanocomposites Containing Plasma Treated Carbon Nanotubes with an Experimental Study and Molecular Dynamics Simulations, Sci. Rep., 2020, 10(1), p 1–10. https://doi.org/10.1038/s41598-019-56976-w

    Article  CAS  Google Scholar 

  19. H. Sezgin, R. Mishra, J. Militky and O. Berk Berkalp, Mechanical, Thermo-Mechanical and Thermal Characteristics of Multi-Walled Carbon Nanotubes-Added Textile-Reinforced Composites, J. Ind. Text., 2020, 50(5), p 692–715. https://doi.org/10.1177/1528083719840631

    Article  CAS  Google Scholar 

  20. K. Wang, J. Xie, T. Li, X. Wu, W. Huang, Q. Tian, C. Tu and W. Yan, Surface Modification of Sepiolite: Effects on Thermomechanical Properties of PP/PA6 Blends, J. Polym. Res., 2020, 27(2), p 1–8. https://doi.org/10.1007/s10965-019-2000-5

    Article  CAS  Google Scholar 

  21. G. Arora and H. Pathak, Experimental and Numerical Approach to Study Mechanical and Fracture Properties of High-Density Polyethylene Carbon Nanotubes Composite, Mater. Today Commun., 2019, 2020(December 22), p 100829. https://doi.org/10.1016/j.mtcomm.2019.100829

    Article  CAS  Google Scholar 

  22. K. Grabowski, P. Zbyrad, T. Uhl, W.J. Staszewski and P. Packo, Multiscale Electro-Mechanical Modeling of Carbon Nanotube Composites, Comput. Mater. Sci., 2017, 135, p 169–180. https://doi.org/10.1016/j.commatsci.2017.04.019

    Article  CAS  Google Scholar 

  23. I. Doghri, L. Brassart, L. Adam and J.S. Gérard, A Second-Moment Incremental Formulation for the Mean-Field Homogenization of Elasto-Plastic Composites, Int. J. Plast., 2011, 27(3), p 352–371.

    Article  Google Scholar 

  24. W. Ogierman and G. Kokot, Mean Field Homogenization in Multi- Scale Modelling of Composite Materials, J. Achiev. Mater. Manuf. Eng., 2013, 61(2), p 343–348.

    Google Scholar 

  25. H.Z.J. Wu, J. Lü and Z. Fu, Extended Multiscale Finite Element Method for Mechanical Analysis of Heterogeneous Materials, Acta. Mech. Sin., 2010, 26, p 899–920.

    Article  Google Scholar 

  26. B. Zhou, W. Luo, J. Yang, X. Duan, Y. Wen, H. Zhou, R. Chen and B. Shan, Thermal Conductivity of Aligned CNT/Polymer Composites Using Mesoscopic Simulation, Compos. Part A Appl. Sci. Manuf., 2016, 90, p 410–416. https://doi.org/10.1016/j.compositesa.2016.07.023

    Article  CAS  Google Scholar 

  27. A. Mora, P. Verma and S. Kumar, Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling, Compos. Part B Eng., 2020, 183, p 107600. https://doi.org/10.1016/j.compositesb.2019.107600

    Article  CAS  Google Scholar 

  28. G.J. Weng, The Theoretical Connection between Mori-Tanaka’s Theory and the Hashin-Shtrikman-Walpole Bounds, Int. J. Eng. Sci., 1990, 28(11), p 1111–1120. https://doi.org/10.1016/0020-7225(90)90111-U

    Article  Google Scholar 

  29. Y. Benveniste, A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials, Mech. Mater., 1987, 6(2), p 147–157. https://doi.org/10.1016/0167-6636(87)90005-6

    Article  Google Scholar 

  30. S. Mercier and A. Molinari, Homogenization of Elastic-Viscoplastic Heterogeneous Materials: Self-Consistent and Mori-Tanaka Schemes, Int. J. Plast., 2009, 25(6), p 1024–1048. https://doi.org/10.1016/J.IJPLAS.2008.08.006

    Article  CAS  Google Scholar 

  31. H. Teng, Effective Elastic-Plastic Response of Two-Phase Composite Materials of Aligned Spheroids under Uniaxial Loading, Mech. Mater., 2018, 117, p 91–104.

    Article  Google Scholar 

  32. S. Padmanabhan, A. Gupta, G. Arora, H. Pathak, R.G. Burela and A.S. Bhatnagar, Meso–Macro-Scale Computational Analysis of Boron Nitride Nanotube-Reinforced Aluminium and Epoxy Nanocomposites: A Case Study on Crack Propagation, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl, 2020 https://doi.org/10.1177/1464420720961426

    Article  Google Scholar 

  33. D. Savvas, G. Stefanou, V. Papadopoulos and M. Papadrakakis, Effect of Waviness and Orientation of Carbon Nanotubes on Random Apparent Material Properties and RVE Size of CNT Reinforced Composites, Compos. Struct., 2016, 152, p 870–882. https://doi.org/10.1016/j.compstruct.2016.06.009

    Article  Google Scholar 

  34. J.P. Johnston, B. Koo, N. Subramanian and A. Chattopadhyay, Modeling the Molecular Structure of the Carbon Fiber/Polymer Interphase for Multiscale Analysis of Composites, Compos. Part B Eng., 2017, 111, p 27–36. https://doi.org/10.1016/j.compositesb.2016.12.008

    Article  CAS  Google Scholar 

  35. S.I. Kundalwal and S.A. Meguid, Multiscale Modeling of Regularly Staggered Carbon Fibers Embedded in Nano-Reinforced Composites, Eur. J. Mech. A/Solids, 2017, 64, p 69–84. https://doi.org/10.1016/j.euromechsol.2017.01.014

    Article  Google Scholar 

  36. G. Arora and H. Pathak, Modeling of Transversely Isotropic Properties of CNT-Polymer Composites Using Meso-Scale FEM Approach, Compos. Part B Eng., 2019, 166, p 588–597. https://doi.org/10.1016/J.COMPOSITESB.2019.02.061

    Article  CAS  Google Scholar 

  37. S. Zhai, P. Zhang, Y. Xian, J. Zeng and B. Shi, Effective Thermal Conductivity of Polymer Composites: Theoretical Models and Simulation Models, Int. J. Heat Mass Transf., 2018, 117, p 358–374. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.067

    Article  CAS  Google Scholar 

  38. A.K. Gupta and S.P. Harsha, Analysis of Mechanical Properties of Carbon Nanotube Reinforced Polymer Composites Using Multi-Scale Finite Element Modeling Approach, Compos. Part B Eng., 2016, 95, p 172–178. https://doi.org/10.1016/j.compositesb.2016.04.005

    Article  CAS  Google Scholar 

  39. T. Takeda and F. Narita, Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-Based Polymer Adhesive Layer under Mode I Loading, Compos. Sci. Technol., 2017, 146, p 26–33. https://doi.org/10.1016/j.compscitech.2017.04.014

    Article  CAS  Google Scholar 

  40. G. Arora and H. Pathak, Multi-Scale Computational Analysis of Carbon-Nanotube–Polymer Composite, Adv. Mech. Eng., 2020 https://doi.org/10.1007/978-981-15-0124-1_19

    Article  Google Scholar 

  41. A.R. Shajari, R. Ghajar and M.M. Shokrieh, Multiscale Modeling of the Viscoelastic Properties of CNT/Polymer Nanocomposites, Using Complex and Time-Dependent Homogenizations, Comput. Mater. Sci., 2018, 142, p 395–409.

    Article  CAS  Google Scholar 

  42. S. Ropers, M. Kardos and T.A. Osswald, A Thermo-Viscoelastic Approach for the Characterization and Modeling of the Bending Behavior of Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 2016, 90, p 22–32.

    Article  CAS  Google Scholar 

  43. G. Arora, H. Pathak and S. Zafar, Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites, J. Compos. Mater., 2019, 53(15), p 2091–2104.

    Article  CAS  Google Scholar 

  44. J.L. Kardos, J. Raisoni, S. Piccarolo and J.C. Halpin, Prediction and Measurement of the Thermal Expansion Coefficient of Crystalline Polymers, Polym. Eng. Sci., 1979, 19(14), p 1000–1009. https://doi.org/10.1002/pen.760191407

    Article  CAS  Google Scholar 

  45. Z. Han and A. Fina, Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review, Prog. Polym. Sci., 2011, 36(7), p 914–944. https://doi.org/10.1016/J.PROGPOLYMSCI.2010.11.004

    Article  CAS  Google Scholar 

  46. K. Shirasu, G. Yamamoto, I. Tamaki and T. Ogasawara, Negative Axial Thermal Expansion Coef Fi Cient of Carbon Nanotubes: Experimental Determination Based on Measurements of Coef Fi Cient of Thermal Expansion for Aligned Carbon Nanotube Reinforced Epoxy Composites, Carbon N. Y., 2015, 95, p 904–909. https://doi.org/10.1016/j.carbon.2015.09.026

    Article  CAS  Google Scholar 

  47. M. Karimi, A. Montazeri and R. Ghajar, On the Elasto-Plastic Behavior of CNT-Polymer Nanocomposites, Compos. Struct., 2017, 160, p 782–791.

    Article  Google Scholar 

  48. O. Breuer and U. Sundararaj, Big Returns from Small Fibers: A Review of Polymer/Carbon Nanotube Composites, Polym. Compos., 2004, 25(6), p 630–645. https://doi.org/10.1002/PC.20058

    Article  CAS  Google Scholar 

  49. D. Feng, X. Dawei, Q. Wang and P. Liu, Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering, J. Mater. Chem. C, 2019, 7(26), p 7938–7946. https://doi.org/10.1039/C9TC02311A

    Article  CAS  Google Scholar 

  50. W. Lin, K.-S. Moon and C.P. Wong, A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube-Polymer Nanocomposites: Toward Applications as Thermal Interface Materials, Adv. Mater., 2009, 21(23), p 2421–2424. https://doi.org/10.1002/ADMA.200803548

    Article  CAS  Google Scholar 

  51. E. Rezvanpanah, S.R. Ghaffarian Anbaran and E. Di Maio, Carbon Nanotubes in Microwave Foaming of Thermoplastics, Carbon N. Y., 2017, 125, p 32–38.

    Article  CAS  Google Scholar 

  52. Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-Walled Carbon Nanotubes, Mater. Sci. Eng. A, 2008, 475(1–2), p 157–165.

    Article  Google Scholar 

  53. F. Pervin, Y. Zhou, V.K. Rangari and S. Jeelani, Testing and Evaluation on the Thermal and Mechanical Properties of Carbon Nano Fiber Reinforced SC-15 Epoxy, Mater. Sci. Eng. A, 2005, 405(1–2), p 246–253.

    Article  Google Scholar 

  54. N. Bala and M. Napiah, Fatigue Life and Rutting Performance Modelling of Nanosilica/Polymer Composite Modified Asphalt Mixtures Using Weibull, Distribution, 2018, 21(4), p 497–506. https://doi.org/10.1080/10298436.2018.1492132

    Article  CAS  Google Scholar 

  55. C. Liu, S. Aengenheister, S. Herzog, Y. Deng, A. Kaletsch, K. Schmitz and C. Broeckmann, Application of Weibull Theory to Laser Surface Textured Al2O3, J. Eur. Ceram. Soc., 2021 https://doi.org/10.1016/j.jeurceramsoc.2020.10.003

    Article  Google Scholar 

  56. O. Benjeddou, Weibull Statistical Analysis and Experimental Investigation of Size Effects on Tensile Behavior of Dry Unidirectional Carbon Fiber Sheets, Polym. Test., 2020, 86, p 106498.

    Article  CAS  Google Scholar 

  57. D. Djeghader and B. Redjel, Weibull Analysis of Fatigue Test in Jute Reinforced Polyester Composite Material, Compos. Commun., 2020, 17, p 123–128.

    Article  Google Scholar 

  58. W. Hwang and K.S. Han, Statistical Study of Strength and Fatigue Life of Composite Materials, Composites, 1987, 18(1), p 47–53.

    Article  CAS  Google Scholar 

  59. C. Kassapoglou, Static and Fatigue Analysis of Notched Composite Laminates, J. Compos. Mater., 2016, 50(30), p 4307–4317. https://doi.org/10.1177/0021998316635242

    Article  Google Scholar 

  60. J. Chen, J. Han and D. Xu, Thermal Expansion Properties of the Polycaprolactam Nanocomposites Reinforced with Single-Walled Carbon Nanotubes, Res. Phys., 2019, 12, p 1645–1652.

    Google Scholar 

  61. Z. Wang and Y. Yuan, Micromechanics-Based Modeling of Elastic Modulus and Coefficient of Thermal Expansion for CNT-Metal Nanocomposites: Effects of Waviness, Clustering and Aluminum Carbide Layer, Int. J. Mech. Mater. Des., 2020, 16(4), p 783–799. https://doi.org/10.1007/s10999-020-09503-z

    Article  CAS  Google Scholar 

  62. X. Shi, M.K. Hassanzadeh Aghdam and R. Ansari, Effect of Aluminum Carbide Interphase on the Thermomechanical Behavior of Carbon Nanotube/Aluminum Nanocomposites, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2019, 233(9), p 1843–1853. https://doi.org/10.1177/1464420718794716

    Article  CAS  Google Scholar 

Download references

Funding

Half-Time Research Assistantship (HTRA) funded by MHRD, Department of Higher Education, New Delhi, INDIA. Financial support received from Aeronautics Research & Development Board (DRDO), New Delhi, India, through Grant file No. 1051914 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Pathak.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, G., Pathak, H. Fracture and Elastoplastic Behavior of Polymer-Carbon Nanotube Composites under Thermomechanical Environment: An Integrated Dual-Scale Modeling and Experimental Study. J. of Materi Eng and Perform 31, 7120–7137 (2022). https://doi.org/10.1007/s11665-022-06743-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06743-2

Keywords

Navigation