Skip to main content
Log in

Effect of Artificial Aging on the Mechanical and Fatigue Properties of the Hot-Stamped 6022 Aluminum Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical and fatigue properties of the 6022 aluminum alloy were investigated experimentally using U-bend samples fabricated through the hot-stamping process. The hot-stamping process was carried out at 550 °C before conducting artificial aging under several conditions. The alloy obtained via the hot-stamping process exhibited a lower degree of internal strain and a higher formability with a lower spring back compared with that obtained via the cold-stamping process. As the hot-stamping process was conducted at a temperature close to the solution temperature of the 6022 alloy, precipitation hardening occurred after artificial aging. The hardness of the hot-stamped 6022 alloy increased with increasing the aging temperature, and the high hardness was detected at 170 °C for 4 and 12 h due to the different strengthening mechanisms, namely dislocations and Mg2Si base precipitates. Like the results of the hardness, a high ultimate tensile strength and a high fatigue strength were obtained for the hot-stamped 6022 alloy after artificial aging at 170 °C for 4 h. The tensile strength is more than 35% higher than that of the cold-stamped sample. Although a high tensile strength was obtained after the aging process, the resistance to crack growth was not very high. This was attributed to the high crack driving force caused by the weak crack closure and low strain energy of the aged 6022 alloy. The failure characteristics of the hot-stamped 6022 samples were investigated via several experimental approaches to understand in detail the material properties of the aged 6022 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Okayasu, S. Takeuchi, M. Yamamoto, H. Ohfuji and T. Ochi, Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy, Metall. Mater. Trans. A, 2015, 46, p 1597–1609.

    Article  CAS  Google Scholar 

  2. M. Okayasu, R. Sato, S. Takasu, A. Niikura and T. Shiraishi, Mechanical Properties of AlSiCu Alloys Produced by the Twin Rolled Continuous Casting Process, Mater. Sci. Eng. A, 2012, 534, p 614–623.

    Article  CAS  Google Scholar 

  3. W.F. Miao and D.E. Laughli, Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022, Metal. Mater. Trans. A, 2000, 31A, p 361–371.

    Article  CAS  Google Scholar 

  4. G.B. Burger, A.K. Gupta, P.W. Jeffrey and D.J. Lloyd, Microstructural Control of Aluminum Sheet Used in Automotive Applications, Mater. Charact., 1995, 35, p 23–39.

    Article  CAS  Google Scholar 

  5. K. Omer, A. Abolhasani, S. Kim, T. Nikdejad, C. Butcher, M. Wells, S. Esmaeili and M. Worswick, Process Parameters for Hot Stamping of AA7075 and D-7xxx to Achieve High Performance Aged Products, J. Mater. Process. Technol., 2018, 257, p 170–179.

    Article  CAS  Google Scholar 

  6. J. Zhou, B.-Y. Wang, J.-G. Lin, L. Fu and W.-Y. Ma, Forming Defects in Aluminum Alloy Hot Stamping of Side-Door Impact Beam, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3611–3620.

    Article  CAS  Google Scholar 

  7. J. Mendiguren, E. Saenz de Argandoña, L. Galdos, Hot Stamping of AA7075 Aluminum Sheets, IDDRG2016 conference on "Challenges in Forming High-Strength sheets, IOP Conf. Series: Mater. Sci. Eng. 2016, 159, p 012026.

  8. Q. Liu, S. Chen, R. Gu, W. Wang and X. Wei, Effect of Heat Treatment Conditions on Mechanical Properties and Precipitates in Sheet Metal Hot Stamping of 7075 Aluminum Alloy, J. Mater. Eng. Perfom., 2018, 27, p 4423–4436.

    Article  CAS  Google Scholar 

  9. X-b. Fan, Z-b. He, W-x. Zhou, S-j. Yuan, Formability and Strengthening Mechanism of Solution Treated Al–Mg–Si Alloy Sheet Under Hot Stamping Conditions, J. Mater. Process. Tech. 2016, 228, p 179–185.

  10. L. Zhu, Z. Liu and Z. Zhang, Investigation on Strengthening of 7075 Aluminum Alloy Sheet in a New Hot Stamping Process with Pre-Cooling, Int. J. Adv. Manufact. Tech., 2019, 103, p 4739–4746.

    Article  Google Scholar 

  11. S.-H. Jung, J. Lee and M. Kawasaki, Effects of Pre-Strain on the Aging Behavior of Al 7075 Alloy for Hot-Stamping Capability, Metals, 2018, 8, p 137.

    Article  Google Scholar 

  12. W.F. Miao and D.E. Laughlin, Precipitation Hardening in Aluminum Alloy 6022, Scripta Mater., 1999, 40, p 873–878.

    Article  CAS  Google Scholar 

  13. C.D. Marioara, S.J. Andersen, J. Jansen and H.W. Zandbergen, The Influence of Temperature and Storage Time at RT on Nucleation of the β″ Phase in a 6082 Al–Mg–Si Alloy, Acta Mater., 2003, 51, p 789–796.

    Article  CAS  Google Scholar 

  14. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Tráholt, U. Tundal and O. Reiso, The Crystal Structure of the β″ Phase in Al–Mg–Si Alloys, Acta Mater., 1998, 46, p 3283–3298.

    Article  CAS  Google Scholar 

  15. M.Z. Wang and M.E. Kassne, Tensile and Fatigue Properties of Aluminum Alloy Sheet 6022, J. Mater. Eng. Perform., 2002, 11, p 166–168.

    Article  CAS  Google Scholar 

  16. N. Pugnoa, M. Ciavarella, P. Cornetti and A. Carpinteri, A Generalized Paris’ Law for Fatigue Crack Growth, J. Mech. Phy. Solid., 2006, 54, p 1333–1349.

    Article  Google Scholar 

  17. K. Komai and K. Minoshima, Tensile and Fatigue Fracture Behavior and Water-Environment Effects in a SiC-Whisker/7075-Aluminium Composite, Comp. Sci. Technol., 1993, 46, p 59–66.

    Article  CAS  Google Scholar 

  18. J.J. Bonnen, J.E. Allison and J.W. Jones, Fatigue Behavior of a 2xxx Series Aluminum Alloy Reinforcedd with 15 vol pct SiCp, Merall. Trans. A, 1991, 22A, p 1007–1019.

    Article  CAS  Google Scholar 

  19. T.S. Srivatsan, S. Anand, S. Sriram and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of alumInum Alloy 7055, Mater. Sci. Eng. A, 2000, 281, p 292–304.

    Article  Google Scholar 

  20. S. Nunomura, Fatigue in Aluminum and Aluminum Alloy, Keikinzoku, 1978, 28, p 566–574.

    Google Scholar 

  21. X. Zhu, J.Z. Ti, J.W. Jones, J.E. Allison, A Probabilistic Model of Fatigue Strength Controlled by Porosity Population in a 319-type Cast Aluminum Alloy: Part I. Model Development. Metall. Mater. Trans. A 2007, 38A, 1111–1122.

  22. X. Zhu, J.W. Jones and J.E. Allison, Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast Aluminum Alloy: Stress-Controlled Fatigue Life Response, Metall. Mater. Trans. A, 2008, 39A, p 2681–2688.

    Article  CAS  Google Scholar 

  23. M. Brochu, Y. Verreman, F. Ajersch and D. Bouchard, High Cycle Fatigue Strength of Permanent Mold and Rheocast Aluminum 357 Alloy, Int. J. Fatigue, 2010, 32, p 1233–1242.

    Article  CAS  Google Scholar 

  24. L. Zeng, J. Sakamoto, A. Fujii and H. Noguchi, Role of Eutectic Silicon Particles in Fatigue Crack Initiation and Propagation and Fatigue Strength Characteristics of Cast Aluminum Alloy A356, Eng. Fract. Mech., 2014, 115, p 1–12.

    Article  Google Scholar 

  25. Z.B. Sajuri, Y. Miyashita and Y. Mutoh, Effects of Humidity and Temperature on the Fatigue Behavior of an Extruded AZ61 Magnesium Alloy, Fatigue Fract. Eng. Mater. Struct., 2005, 28, p 373–379.

    Article  CAS  Google Scholar 

  26. F. Yang, S.M. Yin, S.X. Li and Z.F. Zhang, Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the Very High Cycle Fatigue Regime, Mater. Sci. Eng. A, 2008, 491, p 131–136.

    Article  Google Scholar 

  27. W.C. Liu, J. Dong, P. Zhang, Z.Y. Yao, C.Q. Zhai and W.J. Ding, High Cycle Fatigue Behavior of As-Extruded ZK60 Magnesium Alloy, J. Mater. Sci., 2009, 44, p 2916–2924.

    Article  CAS  Google Scholar 

  28. S. Morita, N. Ohno, F. Tamai and Y. Kawakami, Fatigue Properties of Rolled AZ31B Magnesium Alloy Plate, Trans. Nonferrous Met. Soc. China, 2010, 20, p s523–s526.

    Article  CAS  Google Scholar 

  29. Z. Zúberová, L. Kunz, T.T. Lamark, Y. Estrin and M. Janeček, Fatigue and Tensile Behavior of Cast, Hot-Rolled, and Severely Plastically Deformed AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2007, 38A, p 1934–1940.

    Article  Google Scholar 

  30. R. Yamada, S. Ishizawa, G. Itoh, A. Kurumada, M. Nakai, Effects of environment on fatigue crack growth behavior of 2000 and 7000 series aluminum alloys, Recent Advances in Structural Integrity Analysis: Proceedings of International Congress (APCF/SIF-2014) APCFS/SIF 2014(2014)123–126.

  31. M. Okayasu and Z. Wang, Experimental Investigation of the Effects of Artificial Wedges on Fatigue Crack Growth and Crack Closing Behavior in Annealed SAE1045 Steel, Int. J. Fatigue, 2007, 29, p 962–976.

    Article  CAS  Google Scholar 

  32. D.L. Chen, B. Weiss and R. Stickler, Contribution of the Cyclic Loading Portion Below the Opening Load to Fatigue Crack Growth, Mater. Sci. Eng. A, 1996, 208, p 181–187.

    Article  Google Scholar 

  33. R. Braun, Investigations on the Long-Term Stability of 6013–T6 Sheet, Mater. Charact., 2006, 56, p 85–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Okayasu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okayasu, M., Okawa, M. Effect of Artificial Aging on the Mechanical and Fatigue Properties of the Hot-Stamped 6022 Aluminum Alloy. J. of Materi Eng and Perform 31, 6386–6394 (2022). https://doi.org/10.1007/s11665-022-06716-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06716-5

Keywords

Navigation