Skip to main content
Log in

Molecular Dynamics Simulation on Friction Properties of Textured Surfaces in Nanoscale Rolling Contacts

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dimension of components in micro/nanoelectromechanical systems (MEMS/NEMS) has been reduced to nanometer. Due to size effects at nanoscale, there is severe adhesion effect in the MEMS/NEMS. As a result, improving friction behaviors has become one of the most important ways for MEMS/NEMS to prolong their lives. At macroscale, friction forces of rolling contacts are lower than those of sliding contacts, while there are no comprehensive studies on the friction performance of the nanoscale rolling contacts. Molecular dynamics simulation is used to investigate the friction performance of nanoscale rolling contacts in this work. The dependence of average friction forces on indentation depth and tip size is investigated. The average friction force of the rolling contact is much lower than that of the sliding contact. Increasing the indentation depth causes the increase of the average friction forces, while the tip radius shows little influence. Furthermore, by creating textures with different widths on upper and lower substrates, their influence on the rolling contact performance is studied. Compared with a smooth surface, the textured surfaces can improve the friction properties of nanoscale rolling contacts. The texture width, texture depth, and texture shape influence the friction behaviors greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Judy JW (2016) Microelectromechanical Systems (MEMS): Fabrication, Design and Applications. Smart Materials and Structures 10(6):1115–1134

    Article  Google Scholar 

  2. Ho CM, Tai YC (1998) Micro Electromechanical Systems (MEMS) and Fluid Flows. Annu. Rev. Fluid Mec. 30:579–612

    Article  Google Scholar 

  3. Yuan W (2017) Development and Application of High-End Aerospace MEMS. Front. Mech. Eng.-Prc. 12(4):567–573

    Article  Google Scholar 

  4. Yang P, Zhang H (2008) Numerical Analysis on Meshing Friction Characteristics of Nano-Gear Train. Tribology International 41(6):535–541

    Article  CAS  Google Scholar 

  5. Yang HM, Wang MF, Deng MM, Guo HY, Zhang W, Yang HK, Xi Y, Li XG, Hu CG, Wang ZL (2019) A Full-Packaged Rolling Triboelectric-Electromagnetic Hybrid Nanogenerator for Energy Harvesting and Building up Self-Powered Wireless Systems. Nano Energy 56:300–306

    Article  CAS  Google Scholar 

  6. Lavasani SMH, Pishkenari HN, Meghdari A (2019) How Chassis Structure and Substrate Crystalline Direction Affect the Mobility of Thermally Driven p-Carborane-Wheeled Nanocars. Journal of Physical Chemistry C 123(8):4805–4824

    Article  Google Scholar 

  7. Kim SH, Asay DB, Dugger MT (2007) Naonotribology and MEMS. Nano Today 2(5):22–29

    Article  Google Scholar 

  8. Broitman E (2014) The Nature of the Frictional Force at the Macro-, Micro-, and Nano-Scales. Friction 2(1):40–46

    Article  Google Scholar 

  9. Lee WG, Cho KH, Jang H (2009) Molecular Dynamics Simulation of Rolling Friction Using Nanosize Spheres. Tribology Letters 33:37–43

    Article  CAS  Google Scholar 

  10. Zéhil GP, Gavin HP (2014) Rolling Resistance of A Rigid Sphere with Viscoelastic Coatings. International Journal of Solids and Structures 51(3–4):822–838

    Article  Google Scholar 

  11. Jeng YR, Tsai PC, Fang TH (2005) Molecular Dynamics Studies of Atomic-Scale Friction for Roller-on-Slab Systems with Different Rolling-Sliding Conditions. Nanotechnology 16(9):1941–1949

    Article  Google Scholar 

  12. Liang SW, Wang CH, Fang TH (2016) Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation. Nanoscale Research Letters 11(1):401

    Article  Google Scholar 

  13. Tian Y, Liang H, Dobrynin AV (2020) Elastocapillarity and Rolling Dynamics of Solid Nanoparticles on Soft Elastic Substrates. Soft Matter 16:2230–2237

    Article  CAS  Google Scholar 

  14. Bai LC, Srikanth N, Korznikova EA, Baimova JA, Dmitriev SV, Zhou K (2017) Wear and Friction between Smooth or Rough Diamond-Like Carbon Films and Diamond Tips. Wear 372–373:12–20

    Article  Google Scholar 

  15. Spijker P, Anciaux G, Molinari JF (2013) Relations between Roughness, Temperature and Dry Sliding Friction at the Atomic Scale. Tribology International 59:222–229

    Article  CAS  Google Scholar 

  16. Gnecco E, Bennewitz R, Gyalog T, Loppacher Ch, Bammerlin M, Meyer E, Güntherodt H-J (2000) Velocity Dependence of Atomic Friction. Physical Review Letters 84(6):1172–1175

    Article  CAS  Google Scholar 

  17. Shi JQ, Chen J, Fang L, Sun K, Sun JP, Han J (2018) Atomistic Scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process. Applied Surface Science 435:983–992

    Article  CAS  Google Scholar 

  18. Shi JQ, Fang L, Sun K, Peng WX, Ghen J, Zhang M (2020) Surface Removal of A Copper Thin Film in An Ultrathin Water Environment by A Molecular Dynamics Study. Friction 8(2):323–334

    Article  CAS  Google Scholar 

  19. Uflyand IE, Zhinzhilo VA, Burlakova VE (2019) Metal-Containing Nanomaterials as Lubricant Additives: State-of-the-Art and Future Development. Friction 7(2):93–116

    Article  Google Scholar 

  20. Anantheshwara K, Lockwood AJ, Mishra RK, Inkson BJ, Bobji MS (2012) Dynamical Evolution of Wear Particles in Nanocontacts. Tribology Letters 45:229–235

    Article  CAS  Google Scholar 

  21. Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009) Understanding the Role of Nanoparticles in Nano-Oil Lubrication. Tribology Letters 35:127–131

    Article  CAS  Google Scholar 

  22. Sun JP, Fang L, Han J, Han Y, Chen HW, Sun K (2013) Abrasive Wear of Nanoscale Single Crystal Silicon. Wear 307(1–2):119–126

    Article  CAS  Google Scholar 

  23. Zhang L, Tanaka H (1998) Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding. Tribology International 31(8):425–433

    Article  CAS  Google Scholar 

  24. Sun JP, Fang L, Han J, Han Y, Chen HW, Sun K (2014) Phase Transformations of Mono-Crystal Silicon Induced by Two-Body and Three-Body Abrasion in Nanoscale. Comp. Mater. Sci. 82:140–150

    Article  CAS  Google Scholar 

  25. Si LN, Guo D, Luo JB, Lu XC, Xie GX (2011) Abrasive Rolling Effects on Material Removal and Surface Finish in Chemical Mechanical Polishing Analyzed by Molecular Dynamics Simulation. Journal of Applied Physics 109(8):084335

    Article  Google Scholar 

  26. Zhao WL, Duan FL (2020) Friction Properties of Carbon Nanoparticles (Nanodiamond and Nanoscroll) Confined between DLC and a-SiO2 Surfaces. Tribology International 145:106153

    Article  CAS  Google Scholar 

  27. Shi WJ, Zhao HX, Luo XH (2019) Effect of Diamond Nanoparticle on the Friction Property of Sliding Friction Pair with Molecular Dynamics Simulation. IEEE Access 7:51790–51798

    Article  Google Scholar 

  28. Shi JQ, Fang L, Sun K (2018) Friction and Wear Reduction via Tuning Nanoparticle Shape under Low Humidity Conditions: A Nonequilibrium Molecular Dynamics Simulation. Computational Materials Science 154:499–507

    Article  CAS  Google Scholar 

  29. Bai LC, Srikanth N, Kang GZ, Zhou K (2016) Influence of Third Particle on the Tribological Behaviors of Diamond-Like Carbon Films. Scientific Reports 6:38279

    Article  CAS  Google Scholar 

  30. Hu CZ, Lv JZ, Bai ML, Zhang XL, Tang DW (2020) Molecular Dynamics Simulation of Effects of Nanoparticles on Frictional Heating and Tribological Properties at Various Temperatures. Friction 8(3):531–541

    Article  CAS  Google Scholar 

  31. Raeymaekers B, Etsion I, Talke FE (2007) A Model for Magnetic Tape/Guide Friction Reduction by Laser Surface Texturing. Tribology Letters 28:9–17

    Article  Google Scholar 

  32. Tang MK, Huang XJ, Yu JG, Li XW, Zhang QX (2016) The Effect of Textured Surfaces with Different Roughness Structures on the Tribological Properties of Al Alloy. Journal of Materials Engineering and Performance 25(10):4115–4125

    Article  CAS  Google Scholar 

  33. Kumar M, Ranjan V, Tyagi R (2020) Effect of Shape, Density, and An Array of Dimples on the Friction and Wear Performance of Laser Textured Bearing Steel under Dry Sliding. Journal of Materials Engineering and Performance 29(5):2827–2838

    Article  CAS  Google Scholar 

  34. Ando Y, Sumiya T (2020) Friction Properties of Micro/Nanogroove Patterns in Lubricating Conditions. Tribology International 151:106428

    Article  CAS  Google Scholar 

  35. Chen M-Y, Hong Z-H, Fang T-H, Kang S-H, Kuo L-M (2013) Atomistic Scale Simulation of Textured Surfaces on Dry Sliding Friction. T. Can. Soc. Mech. Eng. 37(3):927–936

    Article  Google Scholar 

  36. Santhapuram RR, Nair AK (2017) Frictional Properties of Multi-Asperity Surfaces at the Nanoscale. Comp. Mater. Sci. 136:253–263

    Article  CAS  Google Scholar 

  37. Tong RT, Quan ZF, Zhao YD, Han B, Liu G (2019) Influence of Nanoscale Textured Surfaces and Subsurface Defects on Friction Behaviors by Molecular Dynamics Simulation. Nanomaterials 9(11):1617

    Article  CAS  Google Scholar 

  38. Tong RT, Quan ZF, Han B, Liu G (2019) Coarse-Grained Molecular Dynamics Simulation on Friction Behaviors of Textured Ag-Coating under Vacuum and Microgravity Environments. Surf. Coat. Tech. 359:265–271

    Article  CAS  Google Scholar 

  39. Tong RT, Han B, Quan ZF, Liu G (2019) Molecular Dynamics Simulation of Friction and Heat Properties of Nano-Texture Gold Film in Space Environment. Surf. Coat. Tech. 358:775–784

    Article  CAS  Google Scholar 

  40. Karthikeyan S, Ciccotti G, Holian BL (1993) Hoover NPT Dynamics for Systems Varying in Shape and Size. Molecular Physics 78(3):533–544

    Article  Google Scholar 

  41. Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics 117:1–19

    Article  CAS  Google Scholar 

  42. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Cluster. The Journal of Chemical Physics 76(1):637–649

    Article  CAS  Google Scholar 

  43. Stukowski A (2009) Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18(1):015012

    Article  Google Scholar 

  44. Zhang JC, Wang XY, Zhu YY, Shi TL, Tang ZR, Li M, Liao GL (2018) Molecular Dynamics Simulation of the Melting Behavior of Copper Nanorod. Comp. Mater. Sci. 143:248–254

    Article  CAS  Google Scholar 

  45. Girifalco LA, Weizer VG (1959) Application of Morse Potential Function to Cubic Metals. Physics Review 114(3):687–690

    Article  CAS  Google Scholar 

  46. Tong RT, Liu G, Liu TX (2011) Multiscale Analysis on Two Dimensional Nanoscale Sliding Contacts of Textured Surfaces. J. Tribol.-T. ASME 133(4):041401

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by National Natural Science Foundation of China [Grant Numbers 52075444, 51675429]; and Key Project of National Natural Science Foundation of China [Grant Number 51535009].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ting Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, RT., Zhang, X., Zhang, T. et al. Molecular Dynamics Simulation on Friction Properties of Textured Surfaces in Nanoscale Rolling Contacts. J. of Materi Eng and Perform 31, 5736–5746 (2022). https://doi.org/10.1007/s11665-022-06624-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06624-8

Keywords

Navigation