Skip to main content
Log in

Experimental, Theoretical, and Numerical Investigations into the Compressive Behavior of Multi-layer Metallic Foam Filled Tubes

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to explore the compressive behavior and energy-absorbing ability of discretely layered foam-filled tubes. Closed-cell zinc, aluminum, and A356 alloy foams manufactured by the casting route are utilized as axial gradient fillers for various configurations of functionally graded structures. The results suggest that the multi-layer foam-filled tubes reveal the multiple quasi-static responses and gradual increase in stress through sequential collapse initiating from the low-density component. By tailoring the foam density and material, the graded foam-filled tubes are promising to regulate the buckling at a desired location and provide better protection. The multi-layer structures generally exhibit superior crashworthiness to the single-layer counterparts, and the maximum quasi-static specific energy absorption of 10.5 J/g is accomplished by the Al‒A356/2FT. The plasticity of multi-layer foam-filled tubes can be described by an asymptotic model based on the density, strength and height ratio of uniform constituents. The drop-weight impact behavior of graded structures can be predicted by finite element modeling in LS-DYNA, and the simulation results are in good agreement with the experiments in terms of dynamic response and crushing pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.K. Rajak, N.N. Mahajan and E. Linul, Crashworthiness Performance and Microstructural Characteristics of Foam-filled Thin-walled Tubes under Diverse Strain Rate, J. Alloys Compd., 2019, 775, p 675–689.

    Article  CAS  Google Scholar 

  2. A. Baroutaji, M. Saga and A.G. Olabi, On the Crashworthiness Performance of Thin-walled Energy Absorbers: Recent Advances and Future Developments, Thin Walled Struct., 2017, 118, p 137–163.

    Article  Google Scholar 

  3. Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou and Y. Li, Dynamic Response of Additively Manufactured Graded Foams, Compos. B, 2020, 183, p 1–15.

    Article  CAS  Google Scholar 

  4. U.A. Atturan, S.H. Nandam, B.S. Murty and S. Sankaran, Deformation Behaviour of In-situ TiB2 Reinforce A357 Aluminium Alloy Composite Foams Under Compressive and Impact Loading, Mater. Sci. Eng. A, 2017, 684, p 178–185.

    Article  CAS  Google Scholar 

  5. M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan and M. Turner, Mechanical Response and Dynamic Deformation Mechanisms of Closed-cell Aluminium Alloy Foams under Dynamic Loading, Int. J. Impact Eng., 2018, 114, p 111–122.

    Article  Google Scholar 

  6. Z. Li, R. Chen and F. Lu, Comparative Analysis of Crashworthiness of Empty and Foam-filled Thin-walled Tubes, Thin Walled Struct., 2018, 124, p 343–349.

    Article  Google Scholar 

  7. M. Li, S. Barbat, R. Baccouche, J. Belwafa and W. Lu, Enhanced Energy Mitigation of Thin-walled Filled with Liquid Nanofoam Under Dynamic Impact, Compos. B, 2020, 193, p 1–10.

    Article  CAS  Google Scholar 

  8. J. Fang, Y. Gao, X. An, G. Sun, J. Chena and Q. Li, Design of Transversely-graded Foam and Wall Thickness Structures for Crashworthiness Criteria, Compos. B, 2016, 92, p 338–349.

    Article  Google Scholar 

  9. X. Lijun and S. Weidong, Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures with High Strength under Static and Dynamic Loading: Experiments, Int. J. Impact Eng., 2018, 111, p 255–272.

    Article  Google Scholar 

  10. Y. Duan, X. Zhao, B. Du, X. Shi, H. Zhao, B. Hou and Y. Li, Quasi-static Compressive Behavior and Constitutive Model of Graded Foams, Int. J. Mech. Sci., 2020, 177, p 1–14.

    Article  Google Scholar 

  11. J. Zhang, L. Chen, H. Wu, Q. Fang and Y. Zhang, Experimental and Mesoscopic Investigation of Double-Layer Aluminum Foam under Impact Loading, Compos. Struct., 2020, 241, p 1–12.

    Article  Google Scholar 

  12. P.J. Tan, S.R. Reid and J.J. Harrigan, On the Dynamic Mechanical Properties of Open-cell Metal Foams—A Re-assessment of the ‘Simple-shock Theory,’ Int. J. Solids Struct., 2012, 49, p 2744–2753.

    Article  CAS  Google Scholar 

  13. V.S. Deshpande and N.A. Fleck, High Strain Rate Compressive Behaviour of Aluminium Alloy Foams, Int. J. Impact Eng., 2000, 24, p 277–298.

    Article  Google Scholar 

  14. R. Huang, S. Ma, M. Zhang, J. Xu and Z. Wang, Dynamic Deformation and Failure Process of Quasi-closed-cell Aluminum Foam Manufactured by Direct Foaming Technique, Mater. Sci. Eng. A, 2019, 756, p 302–313.

    Article  CAS  Google Scholar 

  15. Y. Wu, L. Tang, Z. Liu, Y. Liu, Z. Liang and X. Zhang, Numerical Study of the Shape Irregularity Gradient in Metallic Foams Under Different Impact Velocities, J. Mater. Eng. Perform., 2017, 26, p 3892–3900.

    Article  CAS  Google Scholar 

  16. B.H.G. Jigh, H.H. Toudeshky and M.A. Farsi, Experimental and Multi-scale Analyses of Open-Celled Aluminum Foam with Hole under Compressive Quasi-Static Loading, J. Alloys Compd., 2017, 695, p 133–141.

    Article  CAS  Google Scholar 

  17. H. Fang, J. Bi, C. Zhang, M. Gutowski, E. Palta and Q. Wang, A Constitutive Model of Aluminum Foam for Crash Simulations, Int. J. Non Linear Mech., 2017, 90, p 124–136.

    Article  Google Scholar 

  18. Y. Sun and Q.M. Li, Dynamic Compressive Behaviuor of Cellular Materials: A Review of Phenomenon, Mechanism and Modeling, Int. J. Impact Eng., 2018, 112, p 74–115.

    Article  Google Scholar 

  19. A.G. Hanssen, M. Langseth and O.S. Hopperstad, Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng., 2000, 24, p 347–383.

    Article  Google Scholar 

  20. S. Pattofatto, I. Elnasri, H. Zhao, H. Tsitsiris, F. Hild and Y. Girard, Shock Enhancement of Cellular Structures under Impact Loading: Part II Analysis, J. Mech. Phys. Solids, 2007, 55, p 2672–2686.

    Article  Google Scholar 

  21. V.S. Deshpande and N.A. Fleck, Multiobjective Crashworthiness Optimization of Functionally Lateral Graded Foam-filled Tubes, J. Mech. Phys. Solids, 2000, 48, p 1253–1283.

    Article  CAS  Google Scholar 

  22. A. Reyes, O.S. Hopperstad, T. Berstad, A.G. Hanssen and M. Langseth, Constitutive Modeling of Aluminum Foam Including Fracture and Statistical Variation of Density, Eur. J. Mech. A. Solids, 2003, 22, p 815–835.

    Article  Google Scholar 

  23. G. Sun, G. Li, S. Hou, S. Zhou, W. Li and Q. Li, Crashworthiness Design for Functionally Graded Foam-Filled Thin-walled Structures, Mater. Sci. Eng. A, 2010, 527, p 1911–1919.

    Article  CAS  Google Scholar 

  24. H. Yin, G. Wen, S. Hou and Q. Qing, Multiobjective Crashworthiness Optimization of Functionally Lateral Graded Foam-Filled Tubes, Mater. Des., 2013, 44, p 414–428.

    Article  Google Scholar 

  25. M.S. Attia, S.A. Meguid and H. Nouraei, Nonlinear Finite Element Analysis of the Crush Behavior of Functionally Graded Foam-Filled Columns, Finite Elem. Anal. Des., 2012, 61, p 50–59.

    Article  Google Scholar 

  26. Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru and N. Yoshikawa, Drop Weight Impact Behavior of Functionally Graded Aluminum Foam Consisting of A1050 and A6061 Aluminum Alloys, Mater Sci Eng A, 2015, 639, p 597–603.

    Article  CAS  Google Scholar 

  27. Y. Zhang, S.Y. He, J.G. Liu, W. Zhao, X.L. Gong and J. Yu, Density Gradient Tailoring of Aluminum Foam-filled Tube, Compos. Struct., 2019, 220, p 451–459.

    Article  Google Scholar 

  28. M. Salehi, S.M.H. Mirbagheri and M. Arabkohi, Compressive and Energy Absorption Behavior of Multilayered Foam Filled Tubes, Metall. Mater. Trans. A, 2019, 50A, p 5494–5509.

    Article  CAS  Google Scholar 

  29. M. Salehi, S.M.H. Mirbagheri and A.J. Ramiani, Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes under Drop-weight Impact Testing, Metall. Mater. Trans. A, 2020, 51A, p 5120–5138.

    Article  CAS  Google Scholar 

  30. “Mechanical Testing of Metals-Ductility Testing-Compression Test for Porous and Cellular Metals,” 13314, ISO, 2011

  31. “Metallic Materials-Ductility Testing-High Speed Compression Test for Porous and Cellular Metals,” 17340, ISO, 2014

  32. G. Sun, T. Liu, X. Huang, G. Zheng and Q. Li, Topological Configuration Analysis and Design for Foam Filled Multi-Cell Tubes, Eng. Struct., 2018, 155, p 235–250.

    Article  Google Scholar 

  33. P.J. Tan, J.J. Harrigan and S.R. Reid, Inertia Effects in Uniaxial Dynamic Compression of A Closed Cell Aluminum Alloy Foam, Mater. Sci. Technol., 2012, 18, p 480–488.

    Article  CAS  Google Scholar 

  34. G. Li, Z. Zhang, G. Sun, F. Xu and X. Huang, Crushing Analysis and Multiobjective Optimization for Functionally Graded Foam-filled Tubes Under Multiple Load Cases, Int. J. Mech. Sci., 2014, 89, p 439–452.

    Article  Google Scholar 

  35. J. Fan, J. Zhang, Z. Wang, Z. Li and L. Zhao, Dynamic Crushing Behavior of Random and Functionally Graded Metal Hollow Sphere Foams, Mater. Sci. Eng. A, 2013, 561, p 352–361.

    Article  CAS  Google Scholar 

  36. Alloy phase diagrams, ASM Handbook, 2nd ed., ASM International, Ohio, 1990

  37. J. Liu, S. Yu, X. Zhu, M. Wei, Y. Luo and Y. Liu, Correlation Between Ceramic Additions and Compressive Properties of Zn-22Al Matrix Composite Foams, J. Alloys Compd., 2009, 476, p 220–225.

    Article  CAS  Google Scholar 

  38. M. Raghavan, Al-Ca-Zn (Aluminum-Calcium-Zinc), Phase Diagram Evaluations, ASM International, 2013, pp. 27‒29

  39. S.W. Rahman and M. Medraj, A Thermodynamic Description of the Al-Ca-Zn Ternary System, Calphad, 2009, 33, p 584–598.

    Article  CAS  Google Scholar 

  40. M. Mukherjee, F.G. Moreno, C. Jimenez, A. Rack and J. Banhart, Correlation Between Ceramic Additions and Compressice Properties of Zn-22Al matrix composite foams, Acta Mater., 2017, 131, p 156–168.

    Article  CAS  Google Scholar 

  41. J.Y. Yuan and Y.X. Li, Effects of Cell Wall Property on Compressive Performance of Aluminum Foams, Trans. Nonferrous Met. Soc. china, 2015, 25, p 1619–1625.

    Article  CAS  Google Scholar 

  42. I. Cantat, S.C. Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F. Rouyer and A.S. Jalmes, Foams, Structure and dynamics, 1st ed. Oxford University Press, London, 2013, p 17–30

    Book  Google Scholar 

  43. M. Li, J. Li, S. Barbat, R. Baccouche and W. Lu, Enhanced Filler-tube Wall Interaction in Liquid Nanofoam-Filled Thin-walled Tubes, Compos. Struct., 2018, 200, p 120–126.

    Article  Google Scholar 

  44. L.A. Kumaraswamidhas, D.K. Rajak and S. Das, An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25, p 3430–3438.

    Article  CAS  Google Scholar 

  45. T. Dirgantara, A. Jusuf, E.O. Kurniati, L. Gunawan and I.S. Putra, Crashworthiness Analysis of Foam-filled Square Column Considering Strain Rate Effect of the Foam, Thin Walled Struct., 2018, 129, p 365–380.

    Article  Google Scholar 

  46. Y. Hangai, S. Otazawa and T. Utsunomiya, Aluminum Alloy Foam-filled Aluminum Tube Fabricated by Friction Stir Back Extrusion and Its Compression Properties, Compos. Struct., 2018, 183, p 416–422.

    Article  Google Scholar 

  47. C. Ge, Q. Gao, L. Wang and Z. Hong, Theoretical Prediction and Numerical Analysis for Axial Crushing Behaviour of Elliptical Aluminium Foam-Filled Tube, Thin Walled Struct., 2020, 149, p 1–10.

    Article  Google Scholar 

  48. B. Koohbor and A. Kidane, Design Optimization of Continuously and Discretely Graded Foam Materials for Efficient Energy Absorption, Int. J. Mech. Sci., 2013, 68, p 151–161.

    Google Scholar 

  49. L. Maheo and P. Viot, Impact on Multi-layered Polypropylene Foams, Int. J. Impact Eng., 2013, 53, p 84–93.

    Article  Google Scholar 

  50. N. Gardner, E. Wang and A. Shukla, Performance of Functionally Graded Sandwich Composite Beams Under Shock Wave Loading, Compos. Struct., 2012, 94, p 1755–1770.

    Article  Google Scholar 

  51. Y. Hangai, K. Zushida, H. Fujii, O. Kuwazuru and N. Yoshikawa, Fabrication and Compression Properties of Functionally Graded Copper Foam Made Using Friction Powder Sintering and Dissolution, J. Mater. Eng. Perform., 2017, 26, p 4508–4513.

    Article  CAS  Google Scholar 

  52. Y. Hangai, T. Morita and T. Utsunomiya, Functionally Graded Aluminum Foam Consisting of Dissimilar Aluminum Alloys Fabricated by Sintering and Dissolution Process, Mater. Sci. Eng. A, 2017, 696, p 544–551.

    Article  CAS  Google Scholar 

  53. L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, 2nd ed. Cambridge Solid State Science Series, London, 1997, p 175–231

    Google Scholar 

  54. G.E. Freger, V.N. Kestelman and D.G. Freger, Spirally Anisotropic Composites, Springer-Verlag, Berlin Heidelberg, 2004.

    Book  Google Scholar 

  55. Y.T. Jamshidi, A.P. Anaraki, M. Sadighi, J. Kadkhodapour, S.M.H. Mibagheri and B. Akhavan, Micro-structure Analysis of Quasi-Static Crushing and Low Velocity Impact Behavior of Graded Composite Metallic Foam Filled Tube, Met. Mater. Int., 2019, 145, p 1–14.

    Google Scholar 

  56. A.G. Hanssen, O.S. Hopperstad, M. Langseth and H. Ilstad, Validation of Constitutive Models Applicable to Aluminum Foams, Int. J. Mech. Sci., 2002, 44, p 359–406.

    Article  Google Scholar 

  57. F. Xiong, D. Wang and S. Yin, Optimization Analysis of Novel Foam-filled Elliptical Columns under Multiple Oblique Impact Loading, Mater. Des., 2018, 156, p 198–214.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Metal Foam Group of Amirkabir University (MFGAU) through Grant No. 110-mir-13980131. The authors are grateful to Rahyaft Advanced Sciences and Technologies knowledge-based company for their support in casting the metal foams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. H. Mirbagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Mirbagheri, S.M.H. & Jafari Ramiani, A. Experimental, Theoretical, and Numerical Investigations into the Compressive Behavior of Multi-layer Metallic Foam Filled Tubes. J. of Materi Eng and Perform 31, 3723–3740 (2022). https://doi.org/10.1007/s11665-021-06475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06475-9

Keywords

Navigation