Skip to main content

Advertisement

Log in

A Non-invasive Technique to Estimate the Onset of Creep Strength Deterioration

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A material when exposed to high temperature under a constant load for a prolonged period, it experiences deformation due to Creep. The strength of precipitation hardening materials reduces when exposed to high temperature under load due to the coarsening of precipitates and their incoherency with the matrix. Growth of precipitates beyond a critical size introduces nonlinearity in the propagation of elastic waves through a material. This nonlinearity in the elastic waves can be measured by a parameter known as nonlinear ultrasonic (NLU) parameter which is proportional to the ratio of the amplitude of 2nd harmonic to the square of the amplitude of the fundamental frequency of the sinusoidal wave propagated through the material. This paper addresses the effect of generation and growth of precipitates and their sizes on the changes in NLU parameter in P92 steel, a prime candidate material for power plant, exposed at temperature 650 °C under a load of 120 MPa for a duration till the material ruptures due to creep. Two different mode of experiments under the same condition; multiple samples with single interruption (MSSI) and single sample with multiple interruptions (SSMI), were designed to establish NLU technique to assess the critical stage of the said material. It was observed that in both the test modes when the changes in the NLU parameter were plotted as a function of strain, the peak value of the NLU parameter corresponds to the onset of deterioration in the mechanical strength of the material. The results were verified through microstructural characterization and mechanical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Wang, K.H. Mayer, A. Scholz, C. Berger, H. Chilukuru, K. Durst and W. Blum, Development of New 11% Cr Heat Resistant Ferritic Steels with Enhanced Creep Resistance for Steam Power Plants with Operating Steam Temperatures up to 650 C, Mater. Sci. Eng. A, 2009, 510, p 180–184.

    Article  Google Scholar 

  2. V. Skorobogatykh, I. Schenkova, V. Dudko, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in a 9% Cr Heat Resistant Steel During Creep Tests, in Materials Science Forum, vol 638 (Trans Tech Publications, 2010), pp. 2315–2320

  3. F. Abe, Long-Term Stabilization of Creep-Resistant Ferritic Steels for Highly Efficient Ultra-Supercritical Power Plants, in Advances in Science and Technology, vol 72 (Trans Tech Publications, 2010), pp. 12–21

  4. K.H. Mayer, A. Scholz and Y. Wang, Investigations of Ferritic/Martensitic Super Heat Resistant 11–12% Cr Steels for 650 °C Power Plants, Mater. Wiss. Werkst., 2006, 37(10), p 806–811.

    Article  CAS  Google Scholar 

  5. Y. Hasegawa, M. Ohgami and T. Murahi, Grain Boundary Strengthening Mechanism of Tungsten Containing 9 to 12% Chromium Ferritic Heat Resistant Steels at 650 deg C, J. Soc. Mater. Sci. Jpn., 2003, 52(7), p 843–850.

    Article  CAS  Google Scholar 

  6. D. Rojas, J. Garcia, O. Prat, G. Sauthoff and A.R. Kaysser-Pyzalla, 9% Cr Heat Resistant Steels: Alloy Design, Microstructure Evolution and Creep Response at 650 C, Mater. Sci. Eng. A, 2011, 528(15), p 5164–5176.

    Article  CAS  Google Scholar 

  7. K. Miyahara, J.H. Hwang and Y. Shimoide, Aging Phenomena Before the Precipitation of the Bulky Laves Phase in Fe-10% Cr Ferritic Alloys, Scr. Metall. Mater., 1995, 32(12), p 1917–1921.

    Article  CAS  Google Scholar 

  8. J. Hald, Metallurgy and Creep Properties of new 9–12% Cr Steels, Steel Res. Int., 1996, 67(9), p 369–374.

    Article  CAS  Google Scholar 

  9. A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin and G. Eggeler, On the Contribution of Carbides and Micrograin Boundaries to the creep Strength of Tempered Martensite Ferritic Steels, Acta Mater., 2007, 55(2), p 539–550.

    Article  CAS  Google Scholar 

  10. B. Raj, B.K. Choudhary and R.S. Raman, Mechanical Properties and Non-destructive Evaluation of Chromium–Molybdenum Ferritic Steels for Steam Generator Application, Int. J. Press. Vessels Pip., 2004, 81(6), p 521–534.

    Article  CAS  Google Scholar 

  11. Z.J. Chen, M.R. Govindaraju, D.C. Jiles, S.B. Biner and M.J. Sablik, Assessment of Creep Damage of Ferromagnetic Material Using Magnetic Inspection, IEEE Trans. Magn., 1994, 30(6), p 4596–4598.

    Article  Google Scholar 

  12. H. Willems, T. Jayakumar, T. Koble, and W. Theiner, in Proceedings of the 2nd annual report on project D4, Cost 501/II WP 5C, European Committee on Special Testing, IzfP Saarbrucken (1990)

  13. H. Carreon, Detection of Creep Damage in a Nickel-Based Superalloy Turbine Bucket Using Eddy Current Imaging, Nondest. Test. Eval., 2009, 24(1–2), p 233–241.

    Article  CAS  Google Scholar 

  14. A. Saxena, Electrical Potential Technique for Monitoring Subcritical Crack Growth at Elevated Temperatures, Eng. Fract. Mech., 1980, 13(4), p 741–750.

    Article  Google Scholar 

  15. F. Masuyama, Creep Degradation in Welds of Mod. 9Cr-1Mo Steel, Int. J. Press. Vessels Pip., 2006, 83(11–12), p 819–825.

    Article  CAS  Google Scholar 

  16. S. Kirihara, M. Shiga, M. Sukekawa, T. Yoshioka and C. Asano, Fundamental Study on Non-Destructive Detection of Creep Damage for Low Alloy Steel, J. Soc. Mater. Sci. Jpn., 1984, 33(371), p 1097–1102.

    Article  Google Scholar 

  17. B.J. Cane, Remaining Creep Life Estimation by Strain Assessment on Plant, Int. J. Press. Vessels Pip., 1982, 10(1), p 11–30.

    Article  CAS  Google Scholar 

  18. A. Pyzalla, B. Camin, T. Buslaps, M. Di Michiel, H. Kaminski, A. Kottar, A. Pernack and W. Reimers, Simultaneous Tomography and Diffraction Analysis of Creep Damage, Science, 2005, 308(5718), p 92–95.

    Article  CAS  Google Scholar 

  19. X. Wang, X. Wang, X.G. Niu, D.M. Xiao and X.L. Hu, Application of Nonlinear Ultrasonic Technique to Characterize the Creep Damage in ASME T92 Steel Welded Joints, NDT and E Int., 2018, 98, p 8–16.

    Article  CAS  Google Scholar 

  20. T. Ohtani, H. Ogi and M. Hirao, Noncontact Evaluation of Surface-Wave Nonlinearity for Creep Damage in Cr–Mo–V Steel, Jpn. J. Appl. Phys., 2009, 48(7S), p 07GD02.

    Google Scholar 

  21. S. Baby, B.N. Kowmudi, C.M. Om Prakash, D.V.V. Satyanarayana, K. Balasubramaniam and V. Kumar, Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique, Scr. Mater., 2008, 59(8), p 818–821.

    Article  CAS  Google Scholar 

  22. J.S. Valluri, K. Balasubramaniam and R.V. Prakash, Creep Damage Characterization Using Non-linear Ultrasonic Techniques, Acta Mater., 2010, 58(6), p 2079–2090.

    Article  CAS  Google Scholar 

  23. C. Kim, Creep Damage Characterization of Ni-Based Super Alloy by Acoustic Nonlinearity, Prog. Nat. Sci. Mater. Int., 2012, 22(4), p 303–310.

    Article  Google Scholar 

  24. J. Park, M. Kim, B. Chi and C. Jang, Correlation of Metallurgical Analysis & Higher Harmonic Ultrasound Response for Long Term Isothermally Aged and Crept FM Steel for USC TPP Turbine Rotors, NDT E Int., 2013, 54, p 159–165.

    Article  CAS  Google Scholar 

  25. J. Kang, J. Qu, A. Saxena, and l. Jacobs, On the Detection of Creep Damage in a Directionally Solidified Nickel Base Superalloy Using Nonlinear Ultrasound, in AIP Conference Proceedings, vol 700, no 1 (2004), pp. 1248–1255

  26. Y. Xiang, M. Deng and F.Z. Xuan, Creep Damage Characterization Using Nonlinear Ultrasonic Guided Wave Method: A Mesoscale Model, J. Appl. Phys., 2014, 115(4), p 044914.

    Article  Google Scholar 

  27. K.Y. Jhang, Nonlinear Ultrasonic Techniques for Non-destructive Assessment of Micro Damage in Material: A Review, Int. J. Precis. Eng. Manuf., 2009, 10(1), p 123–135.

    Article  Google Scholar 

  28. A.N. Norris, in Nonlinear Acoustics, ed. M. Hamilton, D. Blackstock (Academic Press, San Diego, CA, 1998), pp. 263–264

  29. D.C. Wallace, Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants, Phys. Rev., 1967, 162(3), p 776.

    Article  CAS  Google Scholar 

  30. J.H. Cantrell, Crystalline Structure and Symmetry Dependence of Acoustic Nonlinearity Parameters, J. Appl. Phys., 1994, 76(6), p 3372–3380.

    Article  CAS  Google Scholar 

  31. J. Melngailis, A.A. Maradudin and A. Seeger, Diffraction of Light by Ultrasound in Anharmonic Crystals, Phys. Rev., 1963, 131(5), p 1972.

    Article  Google Scholar 

  32. M.D. Mathew, K.L. Murty, K.B.S. Rao and S.L. Mannan, Ball Indentation Studies on the Effect of Aging on Mechanical Behaviour of Alloy 625, Mater. Sci. Eng. A, 1999, 264(1), p 159–166.

    Article  Google Scholar 

  33. G. Das, S. Ghosh and S.K. Sahay, Use of Ball Indentation Technique to Determine the Change of Tensile Properties of SS316L Steel Due to Cold Rolling, Mater. Lett., 2005, 59(18), p 2246–2251.

    Article  CAS  Google Scholar 

  34. V. Karthik, P. Visweswaran, A. Bhushan, D.N. Pawaskar, K.V. Kasiviswanathan, T. Jayakumar and B. Raj, Finite Element Analysis of Spherical Indentation to Study Pile-Up/Sink-In Phenomena in Steels and Experimental Validation, Int. J. Mech. Sci., 2012, 54(1), p 74–83.

    Article  Google Scholar 

  35. A. Metya, M. Ghosh, N. Parida and S.P. Sagar, Higher Harmonic Analysis of Ultrasonic Signal for Ageing Behaviour Study of C-250 Grade Maraging Steel, NDT E Int., 2008, 41(6), p 484–489.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur for his kind permission to publish this work. The first author also acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmishtha Palit Sagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Sagar, S.P. A Non-invasive Technique to Estimate the Onset of Creep Strength Deterioration. J. of Materi Eng and Perform 31, 1642–1653 (2022). https://doi.org/10.1007/s11665-021-06272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06272-4

Keywords

Navigation