Skip to main content
Log in

Constitutive Modeling of Flow Behavior and Processing Maps of a Low-Carbon Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to study the thermal deformation behavior of a low-carbon steel, the samples were subjected to a single-pass thermal compression test on the Gleeble-1500 thermal simulator. The compression temperature was 900-1200 °C, and the strain rate was 0.01-10 s−1. Based on the experimental results, a strain-compensated Arrhenius constitutive model and a physical constitutive model based on dynamic recrystallization were established. The correlation coefficient and average absolute relative error were used to appraisal the accuracy of models. These models were compared and both models can be used to predict the hot deformation behavior of the test steel. Furthermore, processing maps were established at the strains of 0.2, 0.4, 0.6, 0.8 and 1.0 to study the optimal processing conditions for the tested steel. The processing maps imply that two plastic instability zones formed at the areas of low temperature with high strain rate and high temperature with high strain rate, where the hot working process should be avoided. The optimal processing conditions for the tested steel are 1100-1175 °C and 1.35×10−1–6×10−1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.M. Sellars and W.J. Mctegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138.

    Article  CAS  Google Scholar 

  2. A. Bergstrom and B. Aronsson, The Application of a Dislocation Model to the Strain and Temperature Dependence of the Strain Hardening Exponent n, in the Ludwik-Hollomon Relation Between Stress and Strain in Mild Steels, Metall. Mater. Trans. B., 1972, 3(7), p 1951–1957.

    Article  CAS  Google Scholar 

  3. A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Mater. Trans. A., 1991, 22(7), p 1545–1558.

    Article  Google Scholar 

  4. R.B. Li, Y.Q. Chen, C.X. Jiang, R.L. Zhang, Y.P. Fu, T. Huang and T.T. Chen, Hot Deformation Behavior and Processing Maps of a 9Ni590B Steel International, J. Mater. Eng. Perform., 2020, 29, p 3858–3867.

    Article  CAS  Google Scholar 

  5. R.X. Zhai, W. Wang, R. Ma, S.J. Zhang, S.B. Ma, L.P. Li, S.Y. Gong and H.J. Zhang, Hot Deformation Behavior and Processing Map of As-Cast 40CrNiMo Alloy Steel, J. Mater. Eng. Perform., 2020, 9(2), p 1929–1940.

    Google Scholar 

  6. W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang and H. Yu, Hot Deformation Behavior and Workability Characteristic of a Fine-Grained Mg-8Sn-2Zn-2Al Alloy with Processing Map, J. Mater. Sci. Technol., 2019, 35, p 1198–1209.

    Article  Google Scholar 

  7. J.G. He, J.B. Wen, X.D. Zhou and Y.Y. Liu, Hot Deformation Behavior and Processing Map of Cast 5052 Aluminum Alloy, Procedia Manuf., 2019, 37, p 2–7.

    Article  Google Scholar 

  8. J.B. Zhang, C.J. Wu, Y.Y. Peng, X.C. Xia, J.G. Li, J. Ding, C. Liu, X.G. Chen, J. Dong and Y.C. Liu, Hot Compression Deformation Behavior and Processing Maps of ATI 718Plus Superalloy, J. Alloys Compd., 2020, 835, p 155195.

    Article  CAS  Google Scholar 

  9. W.Z. Bao, L.K. Bao, D. Liu, D.Y. Qu, Z.Z. Kong, M.J. Peng and Y.H. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy Under Hot Compression, J. Mater. Eng. Perform., 2020, 29, p 607–619.

    Article  CAS  Google Scholar 

  10. X.S. Xia, K. Zhang, M.L. Ma and T. Li, Constitutive Modeling of flow Behavior and Processing Maps of Mg-8.1Gd-4.5Y-0.3Zr alloy, J. Magnes. Alloys, 2020, 8(3), p 917–928.

    Article  CAS  Google Scholar 

  11. H.T. Zhao, J.J. Qi, R. Su, H.Q. Zhang, H.W. Chen, L.J. Bai and C.G. Wang, Hot deformation Behaviour of 40CrNi Steel and Evaluation of Different Processing Map Construction Methods, J. Mater. Res. Technol., 2020, 9(3), p 2856–2869.

    Article  CAS  Google Scholar 

  12. B. Ke, L.Y. Ye, J.G. Tang, Y. Zhang, S.D. Liu, H.Q. Lin, Y. Dong and X.D. Liu, Hot Deformation Behavior and 3D Processing Maps of AA7020aluminum Alloy, J. Alloys Compd., 2020, 845, p 156113.

    Article  CAS  Google Scholar 

  13. Y.H. Sun, R.C. Wang, J. Ren, C.Q. Peng and Y. Feng, Hot Deformation Behavior of Mg-8Li-3Al-2Zn-02Zr Alloy Based on Constitutive Analysis, Dynamic Recrystallization Kinetics, and Processing Map, Mech. Mater., 2019, 131, p 158–168.

    Article  Google Scholar 

  14. C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia and R.Q. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr-Ni-Mo Alloyed Steel, Mater. Des., 2016, 90, p 804–814.

    Article  CAS  Google Scholar 

  15. H.C. Ji, H.L. Duan, Y.G. Li, W.D. Li, X.M. Huang, W.C. Pei and Y.H. Lu, Optimization the Working Parameters of as-Forged 42CrMo Steel by Constitutive Equation-Dynamic Recrystallization Equation and Processing Maps, J. Mater. Res. Technol., 2020, 9, p 7210–7224.

    Article  CAS  Google Scholar 

  16. W.F. Shen, L.W. Zhang, C. Zhang, Y.F. Xu and X.H. Shi, Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel, J. Mater. Eng. Perform., 2016, 25(5), p 2065–2073.

    Article  CAS  Google Scholar 

  17. A. He, G.L. Xie, X.Y. Yang, X.T. Wang and H.L. Zhang, A Physically-Based Constitutive Model for a Nitrogen Alloyed Ultralow Carbon Stainless Steel, Comput. Mater. Sci., 2015, 98, p 64–69.

    Article  CAS  Google Scholar 

  18. G.L. Ji, Q. Li and L. Li, A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4Mg Alloy During Hot Working, Mater. Sci. Eng. A., 2014, 615, p 247–254.

    Article  CAS  Google Scholar 

  19. Y. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation-Forging of Ti-6242, Metall. Trans. A., 1984, 15(10), p 1883–1892.

    Article  Google Scholar 

  20. A. Lukaszek-Solek, J. Krawczyk, T. Sleboda and J. Grelowski, Optimization of the Hot Forging Parameters for 4340 Steel by Processing Maps, J. Mater. Res. Technol., 2019, 8(3), p 3281–3290.

    Article  CAS  Google Scholar 

  21. Q.Y. Liao, Y.C. Jiang, Q.C. Le, X.R. Chen, C.L. Cheng, K. Hu and D.D. Li, Hot Deformation Behavior and Processing Map Development of AZ110 Alloy with and Without Addition of La-Rich Mish Metal, J. Mater. Sci. Technol., 2020, 61, p 1–15.

    Article  Google Scholar 

  22. M. Patnamsetty, M.C. Somani, S. Ghosh, S. Ahmed and P. Peura, Processing Map for Controlling Microstructure and Unraveling Various Deformation Mechanisms During Hot Working of CoCrFeMnNi High Entropy Alloy, Mater. Sci. Eng. A., 2020, 793, p 139840.

    Article  CAS  Google Scholar 

  23. Q.B. Yang, L. Lei, X.G. Fan, Z.H. Jia, Z.Q. Zhang, W.G. Li and Q. Liu, Microstructure Evolution and Processing Map of Al-Cu-Li-Mg-Ag Alloy, Mater. Chem. Phys., 2020, 254, p 123256.

    Article  CAS  Google Scholar 

  24. X.W. Yang and W. Li, Flow Behavior and Processing Maps of a Low-Carbon Steel During Hot Deformation, Metall. Mater. Trans. A., 2015, 46A, p 6052–6064.

    Article  Google Scholar 

  25. S.K. Rajput, G.P. Chaudhari and S.K. Nath, Characterization of Hot Deformation Behavior of a Low Carbon Steel Using Processing Maps, Constitutive Equations and Zener-Hollomon Parameter, J. Mater. Process. Technol., 2016, 237, p 113–125.

    Article  CAS  Google Scholar 

  26. L. Wang, L.Z. Gu and D.C. Hu, High-Temperature Deformation Behaviour and Microstructural Evolution of Low Carbon Steel Based on Processing Map, Ironmaking Steelmaking., 2019, 46(4), p 335–342.

    Article  CAS  Google Scholar 

  27. W. Wei, C.L. Yuan, R.D. Wu, W. Jiao and D.C. Liang, Constitutive Modeling and Analysis on High-Temperature Flow Behavior of 25 Steel, J. Iron Steel Res. Int., 2021, 28, p 76–85.

    Article  CAS  Google Scholar 

  28. H. Mirzadeh, J.M. Cabrera and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59(16), p 6441–6448.

    Article  CAS  Google Scholar 

  29. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen and M.S. Chen, Microstructural Evolution and Constitutive Models to Predict Hot Deformation Behaviors of a Nickel-Based Superalloy, Vacuum, 2017, 137, p 104–114.

    Article  CAS  Google Scholar 

  30. S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu and G.D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685.

    Article  CAS  Google Scholar 

  31. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–27.

    Article  Google Scholar 

  32. P. Zhang, C. Yi, G. Chen, H.Y. Qin and C.J. Wang, Constitutive Model Based on Dynamic Recrystallization Behavior During Thermal Deformation of a Nickel-Based Superalloy, Metals., 2016, 6, p 161.

    Article  Google Scholar 

  33. G.L. Ji, Q. Li, K.Y. Ding, L. Yang and L. Li, A Physically-Based Constitutive Model for High Temperature Deformation of Cu-0.36Cr-0.03Zr Alloy, J. Alloys Compd., 2015, 648, p 397–407.

    Article  CAS  Google Scholar 

  34. A.M. Jorge Jr. and O. Balancin, Prediction of Steel Flow Stresses Under Hot Working Conditions, Mater. Res., 2005, 8(3), p 309–315.

    Article  Google Scholar 

  35. J.J. Jonas, X. Quelennec, L. Jiang and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756.

    Article  CAS  Google Scholar 

  36. Y.J. Li, Y. Zhang, Z.Y. Chen, Z.C. Ji, H.Y. Zhu, C.F. Sun, W.P. Dong, X. Li, Y. Sun and S. Yao, Hot Deformation Behavior and Dynamic Recrystallization of GH690 Nickel-Based Superalloy, J. Alloys Compd., 2020, 847, p 156507.

    Article  CAS  Google Scholar 

  37. C.J. Wang, L.Q. Zhang, S.Z. Wei, X.Q. Li, X.C. Wu, Q.K. Li and K.M. Pan, Establishment of Processing Map, Microstructure and High-Temperature Tensile Properties of W-0.25 wt% Al2O3 Alloys, J. Alloys Compd., 2020, 831, p 154751.

    Article  CAS  Google Scholar 

  38. J.J. Liu, K.L. Wang, S.Q. Lu, X.Y. Gao, X. Li and F. Zhou, Hot Deformation Behavior and Processing Map of Zr-4 Alloy, J. Nucl. Mater., 2020, 531, p 1511993.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51604058), Joint Research Fund of Natural Science Foundation of Liaoning—the State Key Laboratory of Rolling and Automation, Northeastern University (2019KF0506) the Ministry of Science and Technology of China (2019YFA0705304), and the Fundamental Research Funds for the Central Universities of China (DUT19JC26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, L., Li, F. et al. Constitutive Modeling of Flow Behavior and Processing Maps of a Low-Carbon Steel. J. of Materi Eng and Perform 31, 895–906 (2022). https://doi.org/10.1007/s11665-021-06233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06233-x

Keywords

Navigation