Skip to main content
Log in

Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dynamic recrystallization (DRX) and flow behavior of a medium carbon Nb-V microalloyed steel was investigated using hot isothermal compression experiments in a wide range of temperatures (1123-1473 K) and strain rates (0.01-10 s−1). The flow stress curves were analyzed comprehensively, and it was found that the flow stress of this steel is higher than C-Mn steel and V microalloyed steel. All the curves obtained can be ranged into three principal types: work hardening, dynamic recovery, and DRX. The DRX behavior of this steel was investigated, including critical strain, kinetics of DRX, and microstructure. The constitutive equation to predict the flow stress of the tested steel was also developed, and the analysis result indicates that the developed model has a high accuracy in predicting the flow stress during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Jahazi and B. Eghbali, The Influence of Hot Forging Conditions on the Microstructure and Mechanical Properties of Two Microalloyed Steels, J. Mater. Process. Technol., 2001, 113, p 594–598

    Article  Google Scholar 

  2. F. Bakkali El Hassani, A. Chenaouia, R. Dkiouak, L. Elbakkali, and A. Alomar, Characterization of Deformation Stability of Medium Carbon Microalloyed Steel During Hot Forging Using Phenomenological and Continuum Criteria, J. Mater. Process. Technol., 2008, 199, p 140–149

    Article  Google Scholar 

  3. Y. Luo, J.M. Peng, H.B. Wang, and X.C. Wu, Effect of Tempering on Microstructure and Mechanical Properties of a Non-quenched Bainitic Steel, Mater. Sci. Eng., A, 2010, 527(15), p 3427–3433

    Article  Google Scholar 

  4. S.D. Gu, L.W. Zhang, J.H. Ruan, P.Z. Zhou, and Y. Zhen, Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-quenched Steel, J. Mater. Eng. Perform., 2014, 23(3), p 1062–1068

    Article  Google Scholar 

  5. L. Ceschini, A. Marconi, C. Martini, A. Morri, and A. Di Schino, Tensile and Impact Behavior of a Microalloyed Medium Carbon Steel: Effect of the Cooling Condition and Corresponding Microstructure, Mater. Des., 2013, 45, p 171–178

    Article  Google Scholar 

  6. Ahmet Kaynar, S. Gündüz, and M. Türkmen, Investigation on the Behavior of Medium Carbon and Vanadium Microalloyed Steels by Hot Forging Test, Mater. Des., 2013, 51, p 819–825

    Article  Google Scholar 

  7. J.L. Liu, W.D. Zeng, Y.J. Lai, and Z.Q. Jia, Constitutive Model of Ti17 Titanium Alloy with Lamellar-Type Initial Microstructure During Hot Deformation Based on Orthogonal Analysis, Mater. Sci. Eng., A, 2014, 597, p 387–394

    Article  Google Scholar 

  8. Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures, Mater. Lett., 2008, 62, p 2132–2135

    Article  Google Scholar 

  9. S.M. Abbasi and A. Shokuhfar, Prediction of Hot Deformation Behaviour of 10Cr-10Ni-5Mo-2Cu Steel, Mater. Lett., 2007, 61, p 2523–2526

    Article  Google Scholar 

  10. G.L. Xie, X.T. Wang, and L. Chen, Microstructural Modelling of Dynamic Recrystallisation in Nb Microalloyed Steels, Mater. Sci. Technol., 2012, 28, p 778–782

    Article  Google Scholar 

  11. S.Q. Bao, G. Zhao, C.B. Yu, Q.M. Chang, C.L. Ye, and X.P. Mao, Recrystallization behavior of a Nb-Microalloyed Steel During Hot Compression, Appl. Math. Model., 2011, 35, p 3268–3275

    Article  Google Scholar 

  12. S.H. Cho, K.B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-microalloyed Steel, ISIJ Int., 2001, 41(1), p 63–69

    Article  Google Scholar 

  13. H.L. Wei, G.Q. Liu, X. Xiao, and M.H. Zhang, Dynamic Recrystallization Behavior of a Medium Carbon Vanadium Microalloyed Steel, Mater. Sci. Eng., A, 2013, 573, p 215–221

    Article  Google Scholar 

  14. B.C. Zhao, T. Zhao, G.Y. Li, and Q. Lu, The Kinetics of Dynamic Recrystallization of a Low Carbon Vanadium-Nitride Microalloyed Steel, Mater. Sci. Eng., A, 2014, 604, p 117–121

    Article  Google Scholar 

  15. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Dynamic and Static Recrystallization Behavior of Low Carbon High Niobium Microalloyed Steel, J. Iron. Steel Res. Int., 2011, 18(1), p 55–60

    Article  Google Scholar 

  16. J.M. Cabrera, A. AlOmar, J.M. Prado, and J.J. Jonas, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28(11), p 2233–2243

    Article  Google Scholar 

  17. H.L. Wei, G.Q. Liu, and M.H. Zhang, Physically Based Constitutive Analysis to Predict Flow Stress of Medium Carbon and Vanadium Microalloyed Steels, Mater. Sci. Eng., A, 2014, 602, p 127–133

    Article  Google Scholar 

  18. J. Wang, W.L. Ma, Z. Chu, and Q. Zhang, Constitutive Model for F45 V Microalloyed Forging Steel at High Temperature, J. Iron. Steel Res. Int., 2014, 21(4), p 464–468

    Article  Google Scholar 

  19. Z. Akbari, H. Mirzadeh, and J.-M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131

    Article  Google Scholar 

  20. H.Y. Li, Y.H. Li, D.D. Wei, J.J. Liu, and X.F. Wang, Constitutive Equation to Predict Elevated Temperature Flow Stress of V150 Grade Oil Casing Steel, Mater. Sci. Eng., A, 2011, 530, p 367–372

    Article  Google Scholar 

  21. Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150

    Article  Google Scholar 

  22. Y. Tao, E.L. Yu, and Y.Q. Zhao, Constitutive Modeling for Flow Stress of 55SiMnMo Bainite Steel at Hot Working Conditions, Mater. Des., 2013, 50, p 574–580

    Article  Google Scholar 

  23. H.L. Wei and G.Q. Liu, Effect of Nb and C on the Hot Flow Behavior of Nb Microalloyed Steels, Mater. Des., 2014, 56, p 437–444

    Article  Google Scholar 

  24. C.M. Sellars and W.J. Mctegart, On Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  Google Scholar 

  25. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  26. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng., A, 2009, 500, p 114–121

    Article  Google Scholar 

  27. C. Phaniraj, D. Samantaray, S. Mandal, and A.K. Bhaduri, A New Relationship Between the Stress Multipliers of Garofalo Equation for Constitutive Analysis of Hot Deformation in Modified 9Cr-1Mo (P91) Steel, Mater. Sci. Eng., A, 2011, 528, p 6066–6071

    Article  Google Scholar 

  28. S.F. Medina and C.A. Hernandez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 137–148

    Article  Google Scholar 

  29. B.H. Lee, N.S. Reddy, J.T. Yeom, and C.S. Lee, Flow Softening Behavior During High Temperature Deformation of AZ31 Mg Alloy, J. Mater. Process. Technol., 2007, 187, p 766–769

    Article  Google Scholar 

  30. G. Kugler and R. Turk, Study of the Influence of Initial Microstructure Topology on the Kinetics of Static Recrystallization Using a Cellular Automata Model, Comput. Mater. Sci., 2006, 37, p 284–291

    Article  Google Scholar 

  31. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756

    Article  Google Scholar 

  32. M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392

    Article  Google Scholar 

  33. H. Mirzadeh and A. Najafizadeh, The Rate of Dynamic Recrystallization in 17-4 PH Stainless Steel, Mater. Des., 2010, 31, p 4577–4583

    Article  Google Scholar 

  34. A. Momeni, H. Arabi, A. Rezaei, H. Badri, and S.M. Abbasi, Hot Deformation Behavior of Austenite in HSLA-100 Microalloyed Steel, Mater. Sci. Eng., A, 2011, 528, p 2158–2163

    Article  Google Scholar 

  35. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27, p 913–919

    Article  Google Scholar 

  36. M. El Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng., A, 2003, 343, p 116–125

    Article  Google Scholar 

  37. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53, p 4605–4612

    Article  Google Scholar 

  38. S. Mandal, A.K. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072

    Article  Google Scholar 

  39. D.S. Svyetlichnyy, The Coupled Model of a Microstructure Evolution and a Flow Stress Based on the Dislocation Theory, ISIJ Int., 2005, 45, p 1187–1193

    Article  Google Scholar 

Download references

Acknowledgment

The authors are very grateful to the financial support received from the Suzhou Suxin Special Steel Group Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-wen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Wf., Zhang, Lw., Zhang, C. et al. Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel. J. of Materi Eng and Perform 25, 2065–2073 (2016). https://doi.org/10.1007/s11665-016-2026-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2026-3

Keywords

Navigation