Skip to main content

Advertisement

Log in

Doping N/O Impurities into a MoNbTiWZr Refractory Multi-Principal Element Alloy and the Strengthening Mechanism

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A MoNbTiWZr refractory multi-principal element alloy with N and O impurities was sintered by mechanical alloying (MA) followed by the hot-press sintering (HPS). The results demonstrated that the as-sintered samples were composed of two homogeneous body-centered cubic (BCC1 plus BCC2) structural phases with a small quantity of face-centered cubic (FCC) (Zr,Ti)O oxide inclusions. Subsequently, the alloy was sintered at 1500 °C for 45 min to give a BCC phase with an average grain size of 7.27 μm and oxide inclusions of approximately 0.86 μm, and the resulting material exhibited a remarkable microhardness of 634 HV, compressive yield strength of 2660 MPa and plastic strain of 2.5% at ambient temperature. The superior mechanical properties of the as-prepared MoNbTiWZr were principally attributed to interstitial solid solution strengthening and grain boundary strengthening. Furthermore, the large difference in the yield strength between the experimental and theoretical values revealed that excessive oxides significantly impaired the contribution of precipitation strengthening to the yield strength. The synergistic effect of the various strengthening mechanisms can be optimized by controlling the size and volume fraction of the oxide precipitates to below 1 μm and 7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.L. Yu, Z.K. Li, X. Zheng, J.J. Zhang, H. Liu, R. Bai and H. Wang, Tensile Properties of Multiphase Mo-Si-B Refractory Alloys at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 532, p 392-395.

    Article  CAS  Google Scholar 

  2. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  3. O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19(5), p 698–706.

    Article  CAS  Google Scholar 

  4. H. Zhang, Y. Zhao, J. Cai, S. Ji, J. Geng, X. Sun and D. Li, High-Strength NbMoTaX Refractory High-Entropy Alloy with Low Stacking Fault Energy Eutectic Phase via Laser Additive Manufacturing, Mater. Des., 2021, 201, p 109462.

    Article  CAS  Google Scholar 

  5. J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li and H. Zhang, Ductile Ti1.5ZrNbAl0.3 Refractory High Entropy Alloy with High Specific Strength, Mater. Lett., 2021, 290, p 129428.

    Article  CAS  Google Scholar 

  6. N. Hua, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtl and P.K. Liaw, Mechanical, Corrosion, and Wear Properties of Biomedical Ti–Zr–Nb–Ta–Mo High Entropy Alloys, J. Alloys Compd., 2021, 861, p 157997.

    Article  CAS  Google Scholar 

  7. O.N. Senkov, A.L. Pilchak and S.L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy, Metall. Mater. Trans. A, 2018, 49(7), p 2876–2892.

    Article  CAS  Google Scholar 

  8. O.N. Senkov, D.B. Miracle, K.J. Chaput and J.-P. Couzinie, Development and Exploration of Refractory High Entropy Alloys—A Review, J. Mater. Res., 2018, 33(19), p 3092–3128.

    Article  CAS  Google Scholar 

  9. J.-P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière and I. Guillot, On the Room Temperature Deformation Mechanisms of a TiZrHfNbTa Refractory High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 645, p 255–263.

    Article  Google Scholar 

  10. O.N. Senkov and S.L. Semiatin, Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working, J. Alloys Compd., 2015, 649, p 1110–1123.

    Article  CAS  Google Scholar 

  11. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509(20), p 6043–6048.

    Article  CAS  Google Scholar 

  12. G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.-P. Couzinié, L. Perrière, T. Chauveau and I. Guillot, Elastic and Plastic Properties of As-Cast Equimolar TiHfZrTaNb High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 30–38.

    Article  CAS  Google Scholar 

  13. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang and X.D. Hui, A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties, Mater. Lett., 2014, 130, p 277–280.

    Article  CAS  Google Scholar 

  14. C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin and J.-W. Yeh, Solution Strengthening of Ductile Refractory HfMoxNbTaTiZr High-Entropy Alloys, Mater. Lett., 2016, 175, p 284–287.

    Article  CAS  Google Scholar 

  15. G. Dirras, J. Gubicza, A. Heczel, L. Lilensten, J.-P. Couzinié, L. Perrière, I. Guillot and A. Hocini, Microstructural Investigation of Plastically Deformed Ti20Zr20Hf20Nb20Ta20 High Entropy Alloy by X-Ray Diffraction and Transmission Electron Microscopy, Mater. Charact., 2015, 108, p 1–7.

    Article  CAS  Google Scholar 

  16. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1), p 1–184.

    Article  CAS  Google Scholar 

  17. C.C. Koch, Nanocrystalline High-Entropy Alloys, J. Mater. Res., 2017, 32(18), p 3435–3444.

    Article  CAS  Google Scholar 

  18. D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad and V. Kumar, Microstructure and Characterization of Mechanically Alloyed Equiatomic AlCuCrFeMnW High Entropy Alloy, Mater. Today Proc., 2016, 3(9), p 2926–2933.

    Article  Google Scholar 

  19. S. Varalakshmi, M. Kamaraj and B.S. Murty, Synthesis and Characterization of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying, J. Alloys Compd., 2008, 460(1), p 253–257.

    Article  CAS  Google Scholar 

  20. T.H. Courtney and Z. Wang, Grinding Media Wear during Mechanical Alloying of Ni-W Alloys in a SPEX Mill, Scr. Metall. Mater., 1992, 27(6), p 777–782.

    Article  CAS  Google Scholar 

  21. R.B. Schwarz and C.C. Koch, Formation of Amorphous Alloys by the Mechanical Alloying of Crystalline Powders of Pure Metals and Powders of Intermetallics, Appl. Phys. Lett., 1986, 49(3), p 146–148.

    Article  CAS  Google Scholar 

  22. P.J. Counihan, A. Crawford and N.N. Thadhani, Influence of Dynamic Densification on Nanostructure Formation in Ti5Si3 Intermetallic Alloy and Its Bulk Properties, Mater. Sci. Eng. A, 1999, 267(1), p 26–35.

    Article  Google Scholar 

  23. P. Bhattacharya, P. Bellon, R.S. Averback and S.J. Hales, Nanocrystalline TiAl Powders Synthesized by High-Energy Ball Milling: Effects of Milling Parameters on Yield and Contamination, J. Alloys Compd., 2004, 368(1–2), p 187–196.

    Article  CAS  Google Scholar 

  24. M.S. El-Genk and J.-M. Tournier, A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems, J. Nucl. Mater., 2005, 340(1), p 93–112.

    Article  CAS  Google Scholar 

  25. C.J. Marvel, D. Yin, P.R. Cantwell and M.P. Harmer, The Influence of Oxygen Contamination on the Thermal Stability and Hardness of Nanocrystalline Ni–W Alloys, Mater. Sci. Eng. A, 2016, 664, p 49–57.

    Article  CAS  Google Scholar 

  26. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh and Z. Lu, Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes, Nature, 2018, 563(7732), p 546–550.

    Article  CAS  Google Scholar 

  27. Y. Long, X. Liang, K. Su, H. Peng and X. Li, A Fine-Grained NbMoTaWVCr Refractory High-Entropy Alloy with Ultra-High Strength: Microstructural Evolution and Mechanical Properties, J. Alloys Compd., 2019, 780, p 607–617.

    Article  CAS  Google Scholar 

  28. J.A. Smeltzer, C.J. Marvel, B.C. Hornbuckle, A.J. Roberts, J.M. Marsico, A.K. Giri, K.A. Darling, J.M. Rickman, H.M. Chan and M.P. Harmer, Achieving Ultra Hard Refractory Multi-Principal Element Alloys via Mechanical Alloying, Mater. Sci. Eng. A, 2019, 763, p 138140.

    Article  CAS  Google Scholar 

  29. Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li and J. Yang, Microstructure and Mechanical Properties of Ultra-Fine Grained MoNbTaTiV Refractory High-Entropy Alloy Fabricated by Spark Plasma Sintering, J. Mater. Sci. Technol., 2019, 35(11), p 2600–2607.

    Article  Google Scholar 

  30. G.D. Hibbard, J.L. McCrea, G. Palumbo, K.T. Aust and U. Erb, An Initial Analysis of Mechanisms Leading to Late Stage Abnormal Grain Growth in Nanocrystalline Ni, Scr. Mater., 2002, 47(2), p 83–87.

    Article  CAS  Google Scholar 

  31. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman and E.J. Lavernia, Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu–Zn–Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61(8), p 2769–2782.

    Article  CAS  Google Scholar 

  32. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen and S.-J. Lin, Anomalous Decrease in X-Ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements, Mater. Chem. Phys., 2007, 103(1), p 41–46.

    Article  CAS  Google Scholar 

  33. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang and Z. Fu, Alloying Behavior and Novel Properties of CoCrFeNiMn High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2015, 56, p 24–27.

    Article  CAS  Google Scholar 

  34. C. Sun, P. Li, S. Xi, Y. Zhou, S. Li and X. Yang, A New Type of High Entropy Alloy Composite Fe18Ni23Co25Cr21Mo8WNb3C2 Prepared by Mechanical Alloying and Hot Pressing Sintering, Mater. Sci. Eng. A, 2018, 728, p 144–150.

    Article  CAS  Google Scholar 

  35. S. Praveen, B.S. Murty and R.S. Kottada, Alloying Behavior in Multi-Component AlCoCrCuFe and NiCoCrCuFe High Entropy Alloys, Mater. Sci. Eng. A, 2012, 534, p 83–89.

    Article  CAS  Google Scholar 

  36. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38.

    Article  CAS  Google Scholar 

  37. B. Kang, J. Lee, H.J. Ryu and S.H. Hong, Ultra-High Strength WNbMoTaV High-Entropy Alloys with Fine Grain Structure Fabricated by Powder Metallurgical Process, Mater. Sci. Eng. A, 2018, 712, p 616–624.

    Article  CAS  Google Scholar 

  38. É. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian and L. Vitos, Experimental and Theoretical Study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) Refractory High-Entropy Alloys, Int. J. Refract. Met. Hard Mater., 2014, 47, p 131–138.

    Article  CAS  Google Scholar 

  39. U.F. Kocks, The Relation between Polycrystal Deformation and Single-Crystal Deformation, Metall. Mater. Trans., 1970, 1(5), p 1121–1143.

    Article  Google Scholar 

  40. M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita and T. Nakano, Novel TiNbTaZrMo High-Entropy Alloys for Metallic Biomaterials, Scr. Mater., 2017, 129, p 65–68.

    Article  CAS  Google Scholar 

  41. S.-P. Wang and J. Xu, TiZrNbTaMo High-Entropy Alloy Designed for Orthopedic Implants: As-Cast Microstructure and Mechanical Properties, Mater. Sci. Eng. C, 2017, 73, p 80–89.

    Article  CAS  Google Scholar 

  42. T.H. Courtney, Mechanical Behavior of Materials, 2nd ed. McGraw-Hill Companies Inc, New York, 2000.

    Google Scholar 

  43. Z. Wang, Q. Fang, J. Li, B. Liu and Y. Liu, Effect of Lattice Distortion on Solid Solution Strengthening of BCC High-Entropy Alloys, J. Mater. Sci. Technol., 2018, 34(2), p 349–354.

    Article  CAS  Google Scholar 

  44. F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski and X. Liu, Polymorphism in a High-Entropy Alloy, Nat. Commun., 2017, 8, p 15687.

    Article  CAS  Google Scholar 

  45. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer and D. Raabe, Ab Initio Thermodynamics of the CoCrFeMnNi High Entropy Alloy: Importance of Entropy Contributions beyond the Configurational One, Acta Mater., 2015, 100, p 90–97.

    Article  CAS  Google Scholar 

  46. X. Sun, H. Li, Y. Han, J. Li, J. Mao and W. Lu, Compressive Response and Microstructural Evolution of Bimodal Sized Particulates Reinforced (TiB+La2O3)/Ti Composites, J. Alloys Compd., 2018, 732, p 524–535.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51805069), and also supported by the Fundamental Research Funds for the Central Universities (Grant No. DUT20GF115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Chen, G., Lv, S. et al. Doping N/O Impurities into a MoNbTiWZr Refractory Multi-Principal Element Alloy and the Strengthening Mechanism. J. of Materi Eng and Perform 30, 9359–9369 (2021). https://doi.org/10.1007/s11665-021-06093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06093-5

Keywords

Navigation