Skip to main content
Log in

First-Principles Investigation of the Structural, Mechanical, and Thermodynamic Properties of Hexagonal and Cubic MoAl5 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The improvement in overall properties is a big challenge for the development of high-temperature materials. The refractory Al-rich MoAl5 is a potential high temperature alloy due to the excellent oxidation resistance and high mechanical properties. However, the correlation between structural and overall properties of MoAl5 is unclear. In this work, the structural stability, elastic and thermodynamic properties of MoAl5 are studied by the first-principles calculations. Two phases: hexagonal and cubic structures, are considered. The result shows that the hexagonal MoAl5 is a table phase. Compared to the cubic MoAl5, the hexagonal MoAl5 exhibits high bulk modulus, shear modulus and Young modulus due to the strong localized hybridization between Mo and Al. Here, it is found that the calculated bulk modulus, shear modulus and Young modulus of the hexagonal MoAl5 are 119, 98 and 230GPa. Finally, the high temperature thermodynamic properties of MoAl5 are related to the vibration of Al atom and Al-Mo bond, which is demonstrated by the density of state and chemical bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Shamanian, A. Rahimi and J.A. Szpunar, Characterization of Microstructure and Texture across N155 Superalloy Weldment Joint with Austenitic Filler Metal, J Mater Eng Perform, 2020, 29, p 1964.

    Article  CAS  Google Scholar 

  2. W. Wang, H. Zhou, Q. Wang, Y. Gao and K. Wang, Influence of Mechanical Alloying and Sintering Temperature on the Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy, J Mater Eng Perform, 2020, 29, p 1686.

    Article  CAS  Google Scholar 

  3. Y. Pan and D. Pu, Influence of Vacancy on the Mechanical, Electronic and Thermodynamic Properties of Mo5SiB2 from First-Principles Calculations, J Electron Mater, 2020, 49, p 1282.

    Article  CAS  Google Scholar 

  4. D.L. Pu and Y. Pan, Influence of High Pressure on the Structure, Hardness and Brittle-to-ductile Transition of NbSi2 Ceramics, Ceram Int, 2021, 47, p 2311.

    Article  CAS  Google Scholar 

  5. J. Zhang, S. Li, C. Lu, C. Sun, S. Pu, Q. Xue, Y. Lin and M. Huang, Anti-wear Titanium Carbide Coating on Low-Carbon Steel by Thermo-Reactive Diffusion, Surf Coat Technol, 2019, 364, p 265.

    Article  CAS  Google Scholar 

  6. Y. Pan, D.L. Pu and E.D. Yu, Structural, Electronic, Mechanical and Thermodynamic Properties of Cr-Si Binary Silicides from First-Principles Investigations, Vacuum, 2021, 185, p 110024.

    Article  CAS  Google Scholar 

  7. Q. Xue, C.Y. Sun, J.Y. Yu, L. Huang, J. Wei and J. Zhang, Microstructure Evolution of a Zn-Al Coating Co-deposited on Low-carbon Steel by Pack Cementation, J Alloy Compd, 2017, 699, p 1012.

    Article  CAS  Google Scholar 

  8. X. Chen, D. Liao, X. Jiang, D. Zhang and T. Shi, Effect of Tungsten Doping on the Performance of MAO Coatings on a Ti6Al4V Drill Pipe, Surf. Innov., 2020, 8, p 279.

    Article  CAS  Google Scholar 

  9. Y. Pan, Cr concentration driving the structural, mechanical, and thermodynamic properties of Cr-Al compounds from first-principles calculations, Int. J. Quantum Chem., 2019, 119, p e25943.

    Article  CAS  Google Scholar 

  10. D. Zhang, J. Gong, X. Chen, S. She, X. Jiang and D. Zeng, Effect of Heat Treatment on Microstructure and Mechanical Properties of API X90 Pipeline Steel Welded Joints, T. Indian I Metals, 2020, 73, p 1.

    Article  CAS  Google Scholar 

  11. W. Ning, H. Zhai, R. Xiao, D. He, G. Liang, Y. Wu, W. Li and X. Li, The Corrosion Resistance Mechanism of Fe-Based Amorphous Coatings Synthesised by Detonation Gun Spraying, J. Mater. Eng. Perform., 2020, 29, p 3921.

    Article  CAS  Google Scholar 

  12. Y. Pan and E. Yu, First-Principles Investigation of Structural Stability, Mechanical and Thermodynamic Properties of Pt3Zr5 Compounds, Physica B, 2021, 611, p 412936.

    Article  CAS  Google Scholar 

  13. J. Cui, H. Liu, X. Li, S. Jiang, B. Zhang, Y. Song and W. Zhang, Fabrication and Characterization of Nickel Thin Film as Resistance Temperature Detector, Vacuum, 2020, 176, p 109288.

    Article  CAS  Google Scholar 

  14. K.V.S. Thurston, B. GLudovatz, Q. Yu, G. Laplanche, E.P. George and R.O. Ritchie, Temperature and Load-Ratio Dependent Fatigue-Crack Growth in the CrMnFeCoNi High-Entropy Alloy, J. Alloy Compd., 2019, 794, p 525.

    Article  CAS  Google Scholar 

  15. Y. Pan and W.M. Guan, The Hydrogenation Mechanism of PtAl and IrAl Thermal Barrier Coatings from First-Principles Investigations, Int. J. Hydrog. Energ., 2020, 45, p 20032.

    Article  CAS  Google Scholar 

  16. A. Shuitcev, Y.X. Tong and L. Li, Indentation Size Effect and Strain Rate Sensitivity of Ni3Ta High Temperature Shape Memory Alloy, Vacuum, 2019, 160, p 2019.

    Article  CAS  Google Scholar 

  17. Y. Pan, Experimental and Theoretical Investigation of Origin of Mechanical Properties and Fracture Mechanism of Pt3Zr High-Temperature Material, JOM, 2020, 72, p 2419.

    Article  CAS  Google Scholar 

  18. M. Yang, W. Zhang, J. Chen, Y. Li, T. Huang, N. Tang and P. Li, Corrosion and Electrochemical Impedance Properties of Ti6Al4V Alloy and Ti-3Zr-2Sn-3Mo-25Nb Alloy Treated by Micro-arc Oxidation Process, Int. J. Electrochem. Sci., 2019, 14, p 8699.

    Article  CAS  Google Scholar 

  19. Y. Pan and D. Pu, First-Principles Investigation of Oxidation Behavior of Mo5SiB2, Ceram Int, 2020, 46, p 6698.

    Article  CAS  Google Scholar 

  20. C. Zhu, Y. Koizumi, A. Chiba, K. Yuge, K. Lishida and H. Inui, Pattern Formation Mechanism of Directionally-Solidified MoSi2/Mo5Si3 Eutectic by Phase-Field Simulation, Intermetallics, 2020, 116, p 106590.

    Article  CAS  Google Scholar 

  21. A. Sakly, J. Costa, B. Trindade, J.V. Fernandes and T. Benameur, Nanostructured Mo3Al-based Composites Strengthened by Al2O3 Precipitates, J. Alloy Compd., 2010, 502, p 480.

    Article  CAS  Google Scholar 

  22. F.F. Klimashin, H. Euchner and P.H. Mayrhofer, Computational and Experimental Studies on Structure and Mechanical Properties of Mo-Al-N, Acta Mater, 2016, 107, p 273.

    Article  CAS  Google Scholar 

  23. M. Li, S. Wang, Q. Wang, Z. Zhao, C. Duan, D. Zhao, L. Zhang and Y. Wang, Microstructure and Mechanical Properties of MoAlB Particles Reinforced Al Matrix Composites by Interface Modification with In Situ Formed Al12Mo, J. Alloy Compd., 2020, 823, p 153813.

    Article  CAS  Google Scholar 

  24. F. Wang, Y. Zhao, C. Yang, N. Fan and J. Zhu, Effect of MoO3 on Microstructure and Mechanical Properties of (Ti, Mo)Al/Al2O3 Composites by In Situ Reactive Hot Pressing, Ceram. Int., 2016, 42, p 1.

    Article  CAS  Google Scholar 

  25. S.A. Mantri, D. Choudhuri, A. Behera, M. Hendrickson, T. Alam and R. Banerjee, Role of Isothermal Omega Phase Precipitation on the Mechanical Behavior of a Ti-Mo-Al-Nb Alloy, Mat. Sci. Eng. A., 2019, 767, p 138397.

    Article  CAS  Google Scholar 

  26. S. Miura, H. Shimamura, J. Fujinaka and T. Mohri, Effects of Microstructure on High Temperature Mechanical Properties of Al3Ti-Mo3Al Two-Phase Intermetallic Alloys, Intermetallics, 2004, 12, p 771.

    Article  CAS  Google Scholar 

  27. R. Nino, S. Miura and T. Mohri, The Behavior of Cracking in Mo3Al±Mo3Al8 Two-phase Intermetallics with Lamellar Structures, Intermetallics, 2001, 9, p 113.

    Article  CAS  Google Scholar 

  28. X. Chen, D. Liao, D. Zhang, X. Jiang, P. Zhao and R. Xu, Effect of Content of Graphene on Corrosion Behavior of Micro-Arc Oxidation Coating on Titanium Alloy Drill Pipe, Int. J. Electrochem. Sci., 2020, 15, p 710.

    Article  CAS  Google Scholar 

  29. J. Zhang, Q. Xue and S. Li, Microstructure and Corrosion Behavior of TiC/Ti(CN)/TiN Multilayer CVD Coatings on High Strength Steels, Appl. Surf. Sci., 2013, 280, p 626.

    Article  CAS  Google Scholar 

  30. Y. Pan and S. Wang, Insight into the Oxidation Mechanism of MoSi2: Ab-initio Calculations, Ceram. Int., 2018, 44, p 19583.

    Article  CAS  Google Scholar 

  31. S. Wang, Y. Pan and Y. Lin, First-principles Study of the Effect of Cr and Al on the Oxidation Resistance of WSi2, Chem. Phys. Lett., 2018, 698, p 211.

    Article  CAS  Google Scholar 

  32. P. Wang, T. Wu, Y.T. Xiao, L. Zhang, J. Pu, W.J. Cao and X.M. Zhong, Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density, Vacuum, 2017, 142, p 21.

    Article  CAS  Google Scholar 

  33. Y. Pan, D.L. Pu, Y.Q. Li and Q.H. Zheng, Origin of the Antioxidation Mechanism of RuAl(1 1 0) Surface from Firstprinciples Calculations, Mat. Sci. Eng. B., 2020, 259, p 114580.

    Article  CAS  Google Scholar 

  34. P. Wang, T. Wu, Y.T. Xiao, J. Pu, X.Y. Guo, J. Huang and C.L. Xiang, Effect of Al2O3 Micro-powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25, p 3972.

    Article  CAS  Google Scholar 

  35. Y. Pan and M. Wen, Insight into the Oxidation Mechanism of Nb3Si(111) surface: First-principles calculations, Mater. Res. Bull., 2018, 107, p 484.

    Article  CAS  Google Scholar 

  36. P. Wang, T. Wu, H. Peng and X.Y. Guo, Effect of NaAlO2 Concentrations on the Properties of Micro-arc Oxidation Coatings on Pure Titanium, Mater. Lett., 2016, 170, p 171.

    Article  CAS  Google Scholar 

  37. M. Oster, J. Tapp, A. Hagenow and A. Moller, Thermal Oxidation of the Intermetallic Phases Al8Mo3 and AlMo3, J. Solid State Chem., 2017, 251, p 233.

    Article  CAS  Google Scholar 

  38. M. Eumann, G. Sauthoff and M. Palm, Re-evaluation of Phase Equilibria in the Al-Mo System, Z Metallkd, 2006, 97, p 1502.

    CAS  Google Scholar 

  39. V.T. Witusiewicz, A.A. Bondar, U. Hecht, O.M. Stryzhboroda, N.I. Tsyganenko, V.M. Voblikov, V.M. Petyukh and T.Y. Velikanova, Thermodynamic Re-modelling of the Ternary AleMoeTi System Based on Novel Experimental Data, J. Alloy Compd., 2018, 749, p 1071.

    Article  CAS  Google Scholar 

  40. M. Wang, Z. Chen, C. Xia, Y. Wu and D. Chen, Theoretical Study of Elastic and Electronic Properties of Al5Mo and Al5W Intermetallics Under Pressure, Mater Chem Phys, 2017, 197, p 145.

    Article  CAS  Google Scholar 

  41. J.C. Schuster and H. Ipser, The AI-Al8Mo3 Section of the Binary System Aluminum-Molybdenum, Metall Trans A., 1991, 22, p 1729.

    Article  Google Scholar 

  42. Y. Pan, The Structural, Mechanical and Thermodynamic Properties of the Orthorhombic TMAl (TM=Ti, Y, Zr and Hf) Aluminides from First-Principles Calculations, Vacuum, 2020, 181, p 109742.

    Article  CAS  Google Scholar 

  43. S. Wang, Y. Pan, Y. Wu and Y. Lin, Insight into the Electronic and Thermodynamic Properties of NbSi2 from First-Principles Calculations, RSC Adv., 2018, 8, p 28693.

    Article  CAS  Google Scholar 

  44. Y. Pan and E. Yu, First-Principles Investigation of Electronic and Optical Properties of H-doped FeS2, Int. J. Energ. Res., 2021 https://doi.org/10.1002/er.6510

    Article  Google Scholar 

  45. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne, First-principles Simulation: Ideas, Illustrations and the CASTEP Code, J. Phys-condens. Mat., 2002, 14, p 2717.

    Article  CAS  Google Scholar 

  46. Y. Pan, J. Wang, D. Wang and H. Deng, Influence of Vacancy on the Elastic Properties, Ductility and Electronic Properties of Hexagonal C40 MoSi2 from First-principles Calculations, Vacuum, 2020, 179, p 109438.

    Article  CAS  Google Scholar 

  47. D. Vanderbilt, Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys Rev B, 1990, 41, p 7892.

    Article  CAS  Google Scholar 

  48. Y. Pan, The Structural Stability and Optical Properties of NiPt Nanomaterial from First-principles Investigations, Mat. Sci. Semicon. Proc., 2020, 120, p 105306.

    Article  CAS  Google Scholar 

  49. Z. Zhang, B. Bai, H. Peng, S. Gong and H. Guo, Effect of Ru on Interdiffusion Dynamics of β-NiAl/DD6 System: A Combined Experimental and First-principles Studies, Mater Design, 2015, 88, p 667.

    Article  CAS  Google Scholar 

  50. Y. Pan and S. Chen, Exploring the Novel Structure, Transportable Capacity and Thermodynamic Properties of TiH2 Hydrogen Storage Material, Int. J. Energ. Res., 2020, 44, p 4997.

    Article  CAS  Google Scholar 

  51. Z. Boekelheide, T. Saerbeck, A.P.J. Stampfl, R.A. Robinon, D.A. Stewart and F. Hellman, Antiferromagnetism in Cr3Al and Relation to Semiconducting Behavior, Phys. Rev. B, 2012, 85, p 094413.

    Article  CAS  Google Scholar 

  52. Y. Pan and Y. Lin, Influence of Alloying Elements on the Mechanical and Thermodynamic Properties of ZrB12 Ceramics from First-principles Calculations, Int. J. Quantum Chem., 2020, 120, p e26217.

    Article  CAS  Google Scholar 

  53. Y. Pan, Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations, ACS Sustain. Chem. Eng., 2020, 8, p 11024.

    CAS  Google Scholar 

  54. S. Chen and Y. Pan, Noble Metal Interlayer-doping Enhances the Catalytic Activity of 2H-MoS2 from First-principles Investigations, Int J Hydrogen Energ, 2021 https://doi.org/10.1016/j.ijhydene.2021.03.202

    Article  Google Scholar 

  55. Y. Pan, Influence of N-vacancy on the Electronic and Optical Properties of Bulk GaN from First-principles Investigations, Int. J. Energ. Res., 2021 https://doi.org/10.1002/er.6744

    Article  Google Scholar 

  56. J. Chen, X. Zhang, L. Yang and F. Wang, The Vacancy Defects and Oxygen Atoms Occupation Effects on Mechanical and Electronic Properties of Mo5Si3 Silicides, Commun. Theor. Phys., 2021, 73, p 045702.

    Article  CAS  Google Scholar 

  57. Y. Pan and W. Guan, Prediction of New Stable Structure, Promising Electronic and Thermodynamic Properties of MoS3: Ab Initio Calculations, J. Power Sour., 2016, 325, p 246.

    Article  CAS  Google Scholar 

  58. J. Yu, D. Zhou, C. Pu, X. Tang and F. Zhang, Prediction of Stable Cu-Li Binary Intermetallics From First-Principles Calculations: Stoichiometries, Crystal Struct. Phys. Prop. J. Alloy Compd., 2018, 766, p 640.

    Article  CAS  Google Scholar 

  59. Y. Pan, C. Jing and Y.P. Wu, The Structure, Mechanical and Electronic Properties of WSi2 from Firstprinciples Investigations, Vacuum, 2019, 167, p 374.

    Article  CAS  Google Scholar 

  60. M.E. Straumanis, The Precision Determination of Lattice Constants by the Powder and Rotating Crystal Methods and Applications, J. Appl. Phys., 1949, 20, p 726.

    Article  CAS  Google Scholar 

  61. Y. Pan, Insight into the Mechanical Properties and Fracture Behavior of Pt3Al Coating by Experiment and Theoretical Simulation, J. Mater. Eng. Perform, 2021, 30, p 2661.

    Article  CAS  Google Scholar 

  62. J.W. Edwards, R. Speiser and H.L. Johnston, High Temperature Structure and Thermal Expansion of Some Metals as Determined by X-ray Diffraction Data I Platinum, Tantalum Niobium and Molybdenum, J. Appl. Phys., 1951, 22, p 424.

    Article  CAS  Google Scholar 

  63. Y. Pan and W.M. Guan, Origin of Enhanced Corrosion Resistance of Ag and Au Doped Anatase TiO2, Int. J. Hydrog. Energ., 2019, 44, p 10407.

    Article  CAS  Google Scholar 

  64. Y. Wu, L. Bao, X. Wang, Y. Wang, M. Peng and Y. Duan, Insight into Structural, Electronic, Elastic and Thermal Properties of A15-type Nb3X(X=Si, Ge, Sn and Pb) Compounds, Mater Today Commun., 2020, 25, p 101410.

    Article  CAS  Google Scholar 

  65. Y. Pan, E. Yu, D. Wang and H. Deng, Sulfur Vacancy Enhances the Electronic and Optical Properties of FeS2 as the High Performance Electrode Material, J Alloy Compd, 2021, 858, p 157662.

    Article  CAS  Google Scholar 

  66. S. Chen, Y. Pan, D. Wang and H. Deng, Structural Stability and Electronic and Optical Properties of Bulk WS2 from First-Principles Investigations, J. Electron Mater, 2020, 49, p 7363.

    Article  CAS  Google Scholar 

  67. Y. Pan and J. Zhang, Influence of Noble Metals on the Electronic and Optical Properties of the Monoclinic ZrO2: A First-principles Study, Vacuum, 2021, 187, p 110112.

    Article  CAS  Google Scholar 

  68. D.F. Zhang, Q.Y. Tang, T.H. Wei, Y.H. Lin, X.W. Chen and J. Xia, Microstructure and Fatigue Performance of Friction Stir Welded Joints of 2A1-T4 and 7075-bT6 Dissimilar Aluminum Alloy, Materialwiss Werkst, 2020, 51, p 1148.

    Article  CAS  Google Scholar 

  69. Y. Wan, Y. Zeng, X. Qian, Q. Yang, K. Sun, Y. Zhang, X. Shang, G. Quan and B. Jiang, First-principles Calculations of Structural, Elastic and Electronic Properties of Second Phases and Solid Solutions in Ti-Al-V Alloys, Physica B, 2020, 591, p 412241.

    Article  CAS  Google Scholar 

  70. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu and J. Meng, Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 From First Principles, Phys Rev B, 2007, 76, p 054115.

    Article  CAS  Google Scholar 

  71. R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A 65 (1952) 349.

  72. S.F. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals, Philos. Mag., 1954, 45, p 823.

    Article  CAS  Google Scholar 

  73. Y. Pan, D. Pu, G. Liu and P. Wang, Influence of Alloying Elements on the Structural Stability, Elastic, Hardness and Thermodynamic Properties of Mo5SiB2 from First-principles Calculations, Ceram Int., 2020, 46, p 16605.

    Article  CAS  Google Scholar 

  74. X. Chen, R. Xu, J. Li, D. Zhang, D. Liao, P. Ren and J. Hu, Effect of Graphene Addition on Structure and Properties of Ni-P Plating Coatings on AlCu4Mg1 Alloy, T Indian I Metals, 2020, 73, p 1789.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the State Key Laboratory of Advance Technology for Comprehensive Utilization of Platinum Metals (Grant No. SKL-SPM-201816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y. First-Principles Investigation of the Structural, Mechanical, and Thermodynamic Properties of Hexagonal and Cubic MoAl5 Alloy. J. of Materi Eng and Perform 30, 8289–8295 (2021). https://doi.org/10.1007/s11665-021-06055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06055-x

Keywords

Navigation