Skip to main content
Log in

Modeling the Effect of Crystallographic Orientations on Coalescing and Sintering for Two Ti Nanoparticles with Equal Size at Atomic Scale

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Understanding coalescing or sintering between particles at atomic scale is of significance for accurately controlling additive manufacturing processes. In this research, thermodynamics quantities and rotation behaviors are monitored to reveal multi-stages scenario of structural changes during sintering two equally sized Ti particles, where bulk Ti can undergo the transformation between a low-temperature HCP and a high-temperature BCC. The coalescing or sintering process and finally packing structure is significantly affected by temperature and contacting facets with various crystallographic orientations. Coalescing and sintering temperature regimes are identified from the calculations of the melting point for single particle. Energy and visually packing images characterize structural transitions including HCP-BCC, rearrangements of surface atoms, and BCC-melt. The temporal evolution of shrinkage factor and atomic level stresses show different stages for the inelastic encounter between the particles. Nanoparticles undergo reorientation, deformation, atomic diffusion, and rearrangements in surface and interfacial regions, which affect the formation and growth of connecting region. Our simulation results reveal that some orientation contacts and temperatures are effective in terms of coalescing or sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.Y. Zhang, D. Qiu, M.A. Glbson, Y.F. Zheng, H. Fraser, D.H. StJohn and M.A. Easton, Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys, Nature, 2019, 576, p 91–96.

    Article  CAS  Google Scholar 

  2. H.S. Yoon, H.T. Lee, K.H. Jang, C.S. Kim, H.S. Park, D.W. Kim, K.W. Lee, S.K. Min and S.H. Ahn, CAD/CAM for Scalable Nanomanufacturing: a Network-Based System for Hybrid 3D Printing, Microsyst. Nanoeng., 2017, 3, p 7072.

    Article  CAS  Google Scholar 

  3. T. Debroy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher and W. Zhang, Scientific, Technological and Economic Issues in Metal Printing and Their Solutions, Nature Mate., 2019, 18, p 1026–1032.

    Article  CAS  Google Scholar 

  4. A.J. Clarke, Fine-Grained Metals from 3D Printing, Nature, 2019, 576, p 41–42.

    Article  CAS  Google Scholar 

  5. M. Qian and D.L. Bourell, Additive manufacturing of titanium alloys, JOM, 2017, 69, p 2677–2678.

    Article  Google Scholar 

  6. Y. Lu, G.F. Sun, X.F. Xiao and J. Mazumder, Online Stress Measurement During Laser-Aided Metallic Additive Manufacturing, Sci. Rep., 2019, 9, p 7630.

    Article  CAS  Google Scholar 

  7. A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stong, C.J. Tassone, J.N. Weker, M.F. Toney, T. Buuren and M.J. Matthews, Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing, Nature Comm., 2019, 10, p 1987.

    Article  CAS  Google Scholar 

  8. A. Basalah, S. Esmaeili and E. Toyserkani, On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures, J. Mater. Process. Tech., 2016, 238, p 341–351.

    Article  CAS  Google Scholar 

  9. X.Y. Xu, P. Nash and D. Mangabhai, Characterization and Sintering of Armstrong Process Titanium Powder, JOM, 2017, 69, p 770–775.

    Article  CAS  Google Scholar 

  10. I.M. Pohrelyuk, A.G. Lukyanenko, O.V. Tkachum and K.S. Shlyahetka, Corrosion Resistance of Sintered Commercially Pure Titanium in Inorganic Acids After Oxidation and Nitriding, JOM, 2019, 71, p 4910–4916.

    Article  CAS  Google Scholar 

  11. J. Stoltz, Influence of Mechanical Forces on Cells and Tissues, Regener. Med. Cell. Ther., 2012, 77, p 111–120.

    Google Scholar 

  12. A.R. Amini, C.P. Laurencin and S.P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Crit. Rev. Biomed. Eng., 2012, 40, p 363–408.

    Article  Google Scholar 

  13. L. Zhang, Atomic Simulations of Packing Patterns and Thermal Behavior in Ti Clusters, Prog. Nat. Sci. Mater. Int., 2019, 29, p 237–243.

    Article  CAS  Google Scholar 

  14. F.H. Froes, Titanium Powder Metallurgy: A Review, Adv. Mater. Process., 2012, 170, p 16–22.

    CAS  Google Scholar 

  15. T. Mukherjee, J.S. Zuback, A. Debroy and T. De, Printability of Alloys for Additive Manufacturing, Sci. Rep., 2016, 6, p 19717.

    Article  CAS  Google Scholar 

  16. B.L. Decost, H. Jain, A.D. Rollett and E.A. Holm, Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks, JOM, 2017, 69, p 456–465.

    Article  Google Scholar 

  17. M. Borish, B.K. Post, A. Roschli, P.C. Chesser, L.J. Love and K.T. Gaul, Defect Identification and Migration via Visual Inspection in Large-Scale Additive Manufacturing, JOM, 2019, 71, p 893–899.

    Article  Google Scholar 

  18. L. Yan, X.Y. Chen, Y.L. Zhang, J.W. Newkirk and F. Liou, Fabrication of Functionally Graded Ti and γ-TiAl by Laser Metal Deposition, JOM, 2017, 69, p 2756–2761.

    Article  CAS  Google Scholar 

  19. P.A. Pires, O. Desmaison and M. Megahed, ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing, JOM, 2018, 70, p 1677–1685.

    Article  Google Scholar 

  20. J. Bishop, A. Clarke and G. Wagner, Integrated Computational and Experimental Methods for Additive Manufacturing, JOM, 2018, 70, p 1587–1588.

    Article  Google Scholar 

  21. T. Gatsos, K.A. Elsayed, Y.W. Zhai and D.A. Lados, Review on Computational Modeling of Process-Microstructure-Property Relationships in Metal Additive Manufacturing, JOM, 2020, 72, p 403–419.

    Article  Google Scholar 

  22. L. Zhang and Q.N. Fan, Effect of Quenching Temperature and Size on Atom Movement and Local Structural Change for Small Copper Clusters Containing 51-54 Atoms During Quenching Processes, Indian J. Phys., 2016, 90, p 9–20.

    Article  CAS  Google Scholar 

  23. L. Zhang and Q.N. Fan, Modeling the Freezing of Molten Copper Nanoclusters: The Effect of Quenching Temperature and Cluster Size, J. Phys. Soc. Jap., 2013, 82, p 054601.

    Article  CAS  Google Scholar 

  24. A.L. Gould, A.J. Logsdail and C.R. Catlow, Influence of Composition and Chemical Arrangement on the Kinetic Stability of 147-Atom Au-Ag Bimetallic Nanoclusters, J. Phys. Chem., 2015, 119, p 23685–23697.

    CAS  Google Scholar 

  25. C. Mottet, G. Rossi, F. Baletto and R. Ferrando, Single Impurity Effect on the Melting of Nanoclusters, Phys. Rev. Lett., 2005, 95, p 035501.

    Article  CAS  Google Scholar 

  26. L. Zhang, Molecular Dynamics Simulations of the Atom Packing Characteristics of Three Deformed Silver Nanoparticles at Room Temperature, Phys. Chem. Chem. Phys., 2016, 18, p 7310–7317.

    Article  CAS  Google Scholar 

  27. X.W. Zhou, R.A. Johnson and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B, 2004, 69, p 144113.

    Article  CAS  Google Scholar 

  28. L. Zhang, Study for the Effect of Continuous Applied Load on a Compressed Ag Nanoparticle at Room Temperature by Atomic Scale Simulations, J. Phys. Soc. Japan, 2016, 85, p 054602.

    Article  Google Scholar 

  29. G. Agareal and A.M. Dongare, Modeling the Thermodynamic Behavior and Shock Response of Ti Systems at the Atomic Scales and Mesoscales, J. Mater. Sci., 2017, 52, p 10853–10870.

    Article  CAS  Google Scholar 

  30. J.Q. Wang, S.H. Shin and A.M. Hu, Geometrical Effects on Sintering Dynamics of Cu-Ag Core-Shell Nanoparticles, J. Phys. Chem. C, 2016, 120, p 17791–17800.

    Article  CAS  Google Scholar 

  31. J.L. Cui, J.W. Zhang, X.W. Wang, B. Theogene, W.J. Wang, H. Tohmyoh, X.Q. He and X.S. Mei, Atomic-Scale Simulation of the Contact Behavior and Mechanism of the SWNT-AgNW Heterostructure, J. Phys. Chem., 2019, 123, p 19693–19703.

    CAS  Google Scholar 

  32. J.L. Cui, H.H. Mei, J.W. Zhang, Z.J. Fan, J. Yang, W.J. Wang, H. Tohmyoh and X.S. Mei, Interfacial Contact Behavior Between CNTs and AgNW with Molecular Dynamics Simulation, Mater., 2020, 13, p 1290.

    Article  CAS  Google Scholar 

  33. J.L. Cui, X.Y. Ren, H.H. Mei, X.W. Wang, J.W. Zhang, Z.J. Fan, W.J. Wang, H. Tohmyoh and X.S. Mei, Molecular Dynamics Simulation Study on the Interfacial Contact Behavior Between Single-Walled Carbon Nanotubes and Nanowires, Appl. Surf. Sci., 2020, 512, p 145696.

    Article  CAS  Google Scholar 

  34. L. Zhang and Y.M. Wang, Packing Changes in Melting, Freezing, and Coalescence of Titanium Nanoparticles from Atomic Simulations, JOM, 2019, 71, p 4917–4924.

    Article  CAS  Google Scholar 

  35. L. Zhang, Studying Stability of Atom Packing for Ti Nanoparticles on Heating by Molecular Dynamics Simulations, Adv. Eng. Mater., 2019, 21, p 1800531.

    Article  CAS  Google Scholar 

  36. D. Nelli, G. Rossi, Z.W. Wang, R.E. Palmer and R. Ferrando, Structure and Orientation Effects in the Coalescence of Au Clusters, Nanoscale, 2020, 12, p 7688.

    Article  CAS  Google Scholar 

  37. R. Theissmann, M. Fendrich, R. Zinetullin, G. Guenther, G. Schierning and D.E. Wolf, Crystallographic Reorientation and Nanoparticle Coalescence, Phys. Rev. B, 2008, 78, p 205413.

    Article  CAS  Google Scholar 

  38. R. Pasianot and E. Savino, Embedded-Atom-Method Interatomic Potentials for HCP Metals, Phys. Rev. B, 1992, 12, p 12704–12710.

    Article  Google Scholar 

  39. K. Laasonen, E. Panizon, D. Bochicchio and R. Ferrando, Computational Between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: a Combined Atimistic-DFT Study, J. Phys. Chem. C, 2013, 117, p 26405–26413.

    Article  CAS  Google Scholar 

  40. V. Vitek and T. Egami, Atomic Level Stresses in Solid and Liquids, Phys. Stat. Sol. (b), 1987, 144, p 145–156.

    Article  CAS  Google Scholar 

  41. P. Piseri, T. Mazza, G. Bongiorno, C. Lenardi, L. Ravagnan, F.D. Foglia, F. DiFonzo, M. Coreno, M. DeSimone, K.C. Prince and P. Milani, Core Level Spectroscopy of Free Titanium Clusters in Supersonic Beams, New J. Phys., 2006, 8, p 1.

    Article  CAS  Google Scholar 

  42. L.M. Farigliano, M.A. Villarreal, E.P.M. Leiva and S.A. Paz, Thermodynamics of Nanoparticle Coalescence at Different Temperatures via Well-Tempered Metadynamics, J. Phys. Chem., 2020, 124, p 24009.

    CAS  Google Scholar 

  43. J.E. Bonevich and L.D. Marks, The Sintering Behavior of Ultrafine Alumina Particles, J. Mater. Res., 1992, 7, p 1489.

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51671051).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, data analysis, and writing, LZ. The author has read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. Modeling the Effect of Crystallographic Orientations on Coalescing and Sintering for Two Ti Nanoparticles with Equal Size at Atomic Scale. J. of Materi Eng and Perform 30, 8336–8348 (2021). https://doi.org/10.1007/s11665-021-06018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06018-2

Keywords

Navigation