Skip to main content
Log in

Corrosion and Wear Analysis of High-Velocity Oxy-Fuel Sprayed WC-10Co-4Cr and Colmonoy-6 Coatings on Nickel-Aluminum Bronze Alloy Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nickel-aluminum bronze (NAB) alloys are widely used in hydraulic and pumping bodies due to their suitable mechanical properties and corrosion resistance. However, the tribological performance of these materials needs to be improved. In this study, the WC-10Co-4Cr, and Colmonoy-6 coatings were applied on a NAB alloy using high-velocity oxy-fuel (HVOF) spraying technique to enhance the corrosion and wear performance of the NAB substrate. The XRD phase analysis evidenced the dominant presence of the WC and W2C phases in the WC-10Co-4Cr coating and the Ni2Cr3 and Si2B3 compounds in the Colmonoy-6 coating. Morphological and surface analysis showed the formation of the coatings with roughness values of Ra = 4.9 ± 0.9 µm for Colmonoy-6 and Ra = 6.8 ± 1.1 µm for WC-10Co-4Cr coatings. The electrochemical measurement in a 3.5 wt.% NaCl solution revealed that applying WC-10Co-4Cr and Colmonoy-6 HVOF coatings improved the corrosion resistance of the NAB substrate by one order of magnitude. This improvement was more significant for Colmonoy-6 coating due to the presence of electrochemically nobler compounds containing Cr and Ni. Wear measurements obtained by pin-on-disk wear test and morphological analysis of the worn path showed the lowest friction coefficient and highest wear resistance for the WC-10Co-4Cr coating followed by Colmonoy-6 coating. The superior wear performance of the WC-10Co-4Cr coating was attributed to its comprehensive mechanical properties with a Vickers hardness of 1152 ± 25 HV30, while the hardness for Colmonoy-6 and NAB substate was 789 ± 65 and 164 ± 5 HV30, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q.N. Song, N. Xu, X. Jiang, Y. Liu, Y. Tong, J.S. Li et al., Effect of Sulfide Concentration on the Corrosion and Cavitation Erosion Behavior of a Manganese-Aluminum Bronze in 3.5% NaCl Solution, J. Mater. Eng. Perform., 2019, 28, p 4053–4064. https://doi.org/10.1007/s11665-019-04150-8

    Article  CAS  Google Scholar 

  2. S. Palani, P. Lakshmanan, and R. Kaliyamurthy, Experimental Investigations of Electrochemical Micromachining of Nickel Aluminum Bronze Alloy, Mater. Manuf. Process., 2020 https://doi.org/10.1080/10426914.2020.1813888

    Article  Google Scholar 

  3. I. Richardson, Guide to Nickel Aluminium Bronze for Engineers, Copper Development Association Publication No. 222, 2016, p. 100

  4. M.E. Moussa, M.A. Waly, and M. Amin, Effect of High Intensity Ultrasonic Treatment on Microstructural Modification and Hardness of a Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 741, p 804–813. https://doi.org/10.1016/j.jallcom.2018.01.218

    Article  CAS  Google Scholar 

  5. R. Manikandan, S.P. Kumaresh Babu, M. Murali, and A. Vallimanalan, A Study of Corrosion Enhanced Erosion in Nickel Aluminium Bronze with Niobium and Yttrium, Mater. Today Proc., 2019 https://doi.org/10.1016/j.matpr.2019.10.083

    Article  Google Scholar 

  6. Q. Luo, Q. Zhang, Z. Qin, Z. Wu, B. Shen, L. Liu et al., The Synergistic Effect of Cavitation Erosion and Corrosion of Nickel-Aluminum Copper Surface Layer on Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 747, p 861–868. https://doi.org/10.1016/j.jallcom.2018.03.103

    Article  CAS  Google Scholar 

  7. P. Parameswaran, A. Godwin Antony, S. Dinesh, and K. Radhakrishnan, Experimental Study on Mechanical and Corrosion Characteristics of NAB Alloy with the Addition of Chromium, Materials Today: Proceedings, Vol. 5, Elsevier, Amterdam, 2018, p 8089–8094. https://doi.org/10.1016/j.matpr.2017.11.495

  8. M.B. Nandakumar, K.G. Sudhakar, H. Natu, and G.B. Jagadish, Experimental Investigation of Slurry Erosion Characteristics of Laser Treated Nickel Aluminum Bronze, Mater. Today Proc., 2018, 5, p 2641–2649. https://doi.org/10.1016/j.matpr.2018.01.044

    Article  CAS  Google Scholar 

  9. S. Mehrazi, A.J. Moran, J.L. Arnold, R.G. Buchheit, and R.S. Lillard, The Electrochemistry of Copper Release from Stainless Steels and Its Role in Localized Corrosion, J. Electrochem. Soc., 2018, 165, p C860–C868. https://doi.org/10.1149/2.0071813jes

    Article  CAS  Google Scholar 

  10. S. Siva, S. Sampathkumar, and J. Sudha, Microstructure and Mechanical Properties of Exothermic-Reaction-Assisted Friction-Stir-Welded Nickel-Aluminum Bronze Alloy, J. Mater. Eng. Perform., 2019, 28, p 2256–2270. https://doi.org/10.1007/s11665-019-03968-6

    Article  CAS  Google Scholar 

  11. S. Thapliyal and D.K. Dwivedi, Study of the Effect of Friction Stir Processing of the Sliding Wear Behavior of Cast NiAl Bronze: A Statistical Analysis, Tribol. Int., 2016, 97, p 124–135. https://doi.org/10.1016/j.triboint.2016.01.008

    Article  CAS  Google Scholar 

  12. W. Lu, W. Zhai, P. Zhang, M. Zhou, X. Liu, and L. Zhou, Effect of Different Levels of Free Water in Oil on the Fretting Wear of Nickel-Aluminum Bronze Based Composites, Wear, 2017, 390–391, p 376–384. https://doi.org/10.1016/j.wear.2017.09.007

    Article  CAS  Google Scholar 

  13. Y. Li, T.L. Ngai, and W. Xia, Mechanical, Friction and Wear Behaviors of a Novel High-Strength Wear-Resisting Aluminum Bronze, Wear, 1996, 197, p 130–136. https://doi.org/10.1016/0043-1648(95)06890-2

    Article  CAS  Google Scholar 

  14. W. Zhai, W. Lu, P. Zhang, M. Zhou, X. Liu, and L. Zhou, Microstructure, Mechanical and Tribological Properties of Nickel-Aluminium Bronze Alloys Developed Via Gas-Atomization and Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 707, p 325–336. https://doi.org/10.1016/j.msea.2017.09.047

    Article  CAS  Google Scholar 

  15. S. Bharti, N.D. Ghetiya, and K.M. Patel, A Review on Manufacturing the Surface Composites by Friction Stir Processing, Mater. Manuf. Process., 2020 https://doi.org/10.1080/10426914.2020.1813897

    Article  Google Scholar 

  16. S. Mohan and A. Mohan, Wear, Friction and Prevention of Tribo-Surfaces by Coatings/Nanocoatings, Elsevier, Amsterdam, 2014. https://doi.org/10.1016/B978-0-85709-211-3.00001-7

    Book  Google Scholar 

  17. K.-S. Park, and S. Kim, Corrosion and Corrosion Fatigue Characteristics of Cast NAB Coated with NAB by HVOF Thermal Spray, J. Electrochem. Soc., 2011, 158, p C335. https://doi.org/10.1149/1.3622343

    Article  CAS  Google Scholar 

  18. M. Koul and J. Gaies, An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze), J. Fail. Anal. Prevent., 2013, 13, p 8–19. https://doi.org/10.1007/s11668-012-9647-0

    Article  Google Scholar 

  19. J. Stokes and L. Looney, FEA of Residual Stress During HVOF Thermal Spraying, J. Mater. Eng. Perform., 2009, 18, p 21–25. https://doi.org/10.1007/s11665-008-9262-0

    Article  CAS  Google Scholar 

  20. G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC)−35% (WC–Co) coating, Surf. Eng., 2019 https://doi.org/10.1080/02670844.2019.1639932

    Article  Google Scholar 

  21. D.R. Tobergte and S. Curtis, Handbook of Thermal Spray Technology, Vol. 53, 2013. https://doi.org/10.1017/CBO9781107415324.004

  22. S.E. Mousavi, N. Naghshehkesh, M. Amirnejad, H. Shammakhi, and A. Sonboli, Wear and Corrosion Properties of Stellite-6 Coating Fabricated by HVOF on Nickel-Aluminium Bronze Substrate, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00697-7

    Article  Google Scholar 

  23. D. Wang, B. Zhang, C. Jia, F. Gao, Y. Yu, K. Chu et al., Influence of Carbide Grain Size and Crystal Characteristics on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-CoCr coatings, Int. J. Refract. Met. Hard Mater., 2017, 69, p 138–152. https://doi.org/10.1016/j.ijrmhm.2017.08.008

    Article  CAS  Google Scholar 

  24. K. Farokhzadeh, R.M. Fillion, and A. Edrisy, The Effect of Deposition Rate on Microstructural Evolution in WC-Co-Cr Coatings Deposited by High-Velocity Oxy-Fuel Thermal Spray Process, J. Mater. Eng. Perform., 2019, 28, p 7419–7430. https://doi.org/10.1007/s11665-019-04502-4

    Article  CAS  Google Scholar 

  25. P.R. Reinaldo and A.S.C.M. D’Oliveira, NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates, J. Mater. Eng. Perform., 2013, 22, p 590–597. https://doi.org/10.1007/s11665-012-0271-7

    Article  CAS  Google Scholar 

  26. M. Gui, R. Eybel, B. Asselin, S. Radhakrishnan, and J. Cerps, Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating, J. Mater. Eng. Perform., 2012, 21, p 2090–2098. https://doi.org/10.1007/s11665-012-0134-2

    Article  CAS  Google Scholar 

  27. Q. Wang, Z. Tang, and L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, J. Mater. Eng. Perform., 2015, 24, p 2435–2443. https://doi.org/10.1007/s11665-015-1496-z

    Article  CAS  Google Scholar 

  28. S.W. Rukhande and W.S. Rathod, Tribological Behaviour of Plasma and HVOF-sprayed NiCrSiBFe Coatings, Surf. Eng., 2020, 36, p 745–755. https://doi.org/10.1080/02670844.2020.1730062

    Article  CAS  Google Scholar 

  29. P. Mukhopadhyay and A. Ghosh, On Bond Wear, Grit-Alloy Interfacial Chemistry and Joint Strength of Synthetic Diamond Brazed with Ni-Cr-B-Si-Fe and Ti Activated Ag-Cu Filler Alloys, Int. J. Refract. Met. Hard Mater., 2018, 72, p 236–243. https://doi.org/10.1016/j.ijrmhm.2017.12.033

    Article  CAS  Google Scholar 

  30. N. Jeyaprakash, C.H. Yang, and S.P. Tseng, Characterization and Tribological Evaluation of NiCrMoNb and NiCrBSiC Laser Cladding on near-Α Titanium Alloy, Int. J. Adv. Manuf. Technol., 2019 https://doi.org/10.1007/s00170-019-04755-2

    Article  Google Scholar 

  31. A. Nouri, P.D. Hodgson, and C. Wen, Effect of Ball-Milling Time on the Structural Characteristics of Biomedical Porous Ti-Sn-Nb alloy, Mater. Sci. Eng. C, 2011, 31, p 921–928. https://doi.org/10.1016/j.msec.2011.02.011

    Article  CAS  Google Scholar 

  32. M.J. Tobar, C. Álvarez, J.M. Amado, G. Rodríguez, and A. Yáñez, Morphology and Characterization of Laser Clad Composite NiCrBSi-WC Coatings on Stainless Steel, Surf. Coat. Technol., 2006, 200, p 6313–6317. https://doi.org/10.1016/j.surfcoat.2005.11.093

    Article  CAS  Google Scholar 

  33. N. Jeyaprakash, C.-H. Yang, and S.-P. Tseng, Wear Tribo-Performances of Laser Cladding Colmonoy-6 and Stellite-6 Micron Layers on Stainless Steel 304 Using Yb:YAG Disk Laser, Met. Mater. Int., 2019 https://doi.org/10.1007/s12540-019-00526-6

    Article  Google Scholar 

  34. H. Zhang, Y. Shi, M. Kutsuna, and G.J. Xu, Laser Cladding of Colmonoy 6 Powder on AISI316L Austenitic Stainless Steel, Nuclear Eng. Des., 2010, 240, p 2691–2696. https://doi.org/10.1016/j.nucengdes.2010.05.040

    Article  CAS  Google Scholar 

  35. V. Shrivastava, G. Kumar, and I.B. Singh, Heat Treatment Effect on the Microstructure and Corrosion Behavior of Al-6061 alloy with Influence of a nanoalumina Reinforcement in 3.5% NaCl solution, J. Alloys Compd., 2019, 775, p 628–38. https://doi.org/10.1016/j.jallcom.2018.10.111

    Article  CAS  Google Scholar 

  36. X. Liu, J. Kang, W. Yue, Z. Fu, L. Zhu, D. She et al., Performance Evaluation of HVOF Sprayed WC-10Co4Cr Coatings Under Slurry Erosion, Surf. Eng., 2019, 35, p 816–825. https://doi.org/10.1080/02670844.2019.1568661

    Article  CAS  Google Scholar 

  37. H. Masoumi, S.M. Safavi, and M. Salehi, Grinding Force, Specific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating, Mater. Manuf. Process., 2014, 29, p 321–330. https://doi.org/10.1080/10426914.2013.872261

    Article  CAS  Google Scholar 

  38. L. Rovatti, N. Lecis, D. Dellasega, V. Russo, and E. Gariboldi, Influence of Aging in the Temperature Range 250–350°C on the Tribological Performance of a WC-CoCr Coating produced by HVOF, Int. J. Refract. Met. Hard Mater., 2018, 75, p 218–224. https://doi.org/10.1016/j.ijrmhm.2018.04.017

    Article  CAS  Google Scholar 

  39. K. Arunkarthikeyan, K. Balamurugan, and P.M.V. Rao, Studies on Cryogenically Treated WC-Co insert at Different Soaking Conditions, Mater. Manuf. Process., 2020, 35, p 545–555. https://doi.org/10.1080/10426914.2020.1726945

    Article  CAS  Google Scholar 

  40. L. Hong, H. Zhang, Q. Tang, J. Wen, and P. Dai, High Temperature Oxidation Behavior of Al0.5CrCoFeNi High Entropy Alloy, Intermetallics, 2015, 44, p 424–8. https://doi.org/10.1016/j.intermet.2018.04.006

    Article  CAS  Google Scholar 

  41. Q. Wang, S. Luo, S. Wang, H. Wang, and C.S. Ramachandran, Wear, Erosion and Corrosion Resistance of HVOF-Sprayed WC and Cr3C2 Based Coatings for Electrolytic Hard Chrome Replacement, Int. J. Refract. Met. Hard Mater., 2019, 81, p 242–252. https://doi.org/10.1016/j.ijrmhm.2019.03.010

    Article  CAS  Google Scholar 

  42. H. Vashishtha, R.V. Taiwade, and S. Sharma, Effect of Acetic Acid on Corrosion Behavior of AISI 201, 304 and 430 stainless steels, Int. J. Mater. Res., 2017, 108, p 406–415. https://doi.org/10.3139/146.111493

    Article  CAS  Google Scholar 

  43. M. Jafari, M.H. Enayati, M. Salehi, S.M. Nahvi, and C.G. Park, Comparison Between Oxidation Kinetics of HVOF Sprayed WC–12Co and WC–10Co–4Cr Coatings, Int. J. Refract. Met. Hard Mater., 2013, 41, p 78–84. https://doi.org/10.1016/j.ijrmhm.2013.02.006

    Article  CAS  Google Scholar 

  44. ASTM B148-18, Standard Specification for Aluminum-Bronze Sand Castings, ASTM International, West Conshohocken, PA, 2018, https://www.astm.org. https://doi.org/10.1520/B0148-18

  45. L. Ding, H. Torbati-Sarraf, and A. Poursaee, The Influence of the Sandblasting as a Surface Mechanical Attrition Treatment on the Electrochemical Behavior of Carbon Steel in Different pH Solutions, Surf. Coat. Technol., 2018, 352, p 112–119. https://doi.org/10.1016/j.surfcoat.2018.08.013

    Article  CAS  Google Scholar 

  46. Coating, Thermal Spray High Velocity Oxygen/Fuel Process. AMS2447D, n.d.

  47. ASTM E2109-01, Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2014, https://www.astm.org. https://doi.org/10.1520/E2109-01R14

  48. R.Q. Guo, C. Zhang, Y. Yang, Y. Peng, and L. Liu, Corrosion and Wear Resistance of a Fe-Based Amorphous Coating in Underground Environment, Intermetallics, 2012, 30, p 94–99. https://doi.org/10.1016/j.intermet.2012.03.026

    Article  CAS  Google Scholar 

  49. D. Fu, H. Xiong, and Q. Wang, Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating, J. Mater. Eng. Perform., 2016, 25, p 4352–4358. https://doi.org/10.1007/s11665-016-2278-y

    Article  CAS  Google Scholar 

  50. C. Park, J. Kim, and S. Kang, Effect of Cobalt on the Synthesis and Sintering of WC-Co Composite Powders, J. Alloys Compd., 2018, 766, p 564–571. https://doi.org/10.1016/j.jallcom.2018.06.367

    Article  CAS  Google Scholar 

  51. T. Rönnhult, B. Brox, and G. Fritze, The Influence of Surface Topography on the x-ray Intensity in Electron Microprobe Analysis (EDS/WDS), Scanning, 1987, 9, p 81–87. https://doi.org/10.1002/sca.4950090205

    Article  Google Scholar 

  52. D.E. Newbury and N.W.M. Ritchie, Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative?, Scanning, 2013, 35, p 141–168. https://doi.org/10.1002/sca.21041

    Article  CAS  Google Scholar 

  53. N.W.M. Ritchie, D.E. Newbury, and J.M. Davis, EDS Measurements of X-Ray Intensity at WDS Precision and Accuracy Using a Silicon Drift Detector, Microsc. Microanal., 2012, 18, p 892–904. https://doi.org/10.1017/S1431927612001109

    Article  CAS  Google Scholar 

  54. D.E. Newbury, Mistakes Encountered During Automatic Peak Identification in Low Beam Energy X-ray Microanalysis, Scanning, 2007, 29, p 137–151. https://doi.org/10.1002/sca.20009

    Article  CAS  Google Scholar 

  55. Y. Liu, W. Liu, Y. Ma, S. Meng, C. Liu, L. Long et al., A comparative Study on Wear and Corrosion Behaviour of HVOF- and HVAF-Sprayed WC–10Co–4Cr Coatings, Surf. Eng., 2017, 33, p 63–71. https://doi.org/10.1080/02670844.2016.1218194

    Article  CAS  Google Scholar 

  56. L.M. Berger, P. Ettmayer, P. Vuoristo, T. Mäntylä, and W. Kunert, Microstructure and Properties of WC-10%Co-4% Cr Spray Powders and Coatings: Part 1 Powder characterization, J. Therm. Spray Technol., 2001, 10, p 311–325. https://doi.org/10.1361/105996301770349402

    Article  CAS  Google Scholar 

  57. V.A.D. Souza and A. Neville, Mechanisms and Kinetics of WC-Co-Cr High Velocity Oxy-Fuel Thermal Spray Coating Degradation in Corrosive Environments, J. Therm. Spray Technol., 2006, 15, p 106–117. https://doi.org/10.1361/105996306X92677

    Article  CAS  Google Scholar 

  58. Y. Qiao, Y.R. Liu, and T.E. Fischer, Sliding and Abrasive Wear Resistance of Thermal-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2001, 10, p 118–125. https://doi.org/10.1361/105996301770349583

    Article  CAS  Google Scholar 

  59. H. Torbati-Sarraf, S.A. Torbati-Sarraf, A. Poursaee, and T.G. Langdon, Electrochemical Behavior of a Magnesium ZK60 Alloy Processed by High-Pressure Torsion, Corros. Sci., 2019, 154, p 90–100. https://doi.org/10.1016/j.corsci.2019.04.006

    Article  CAS  Google Scholar 

  60. S. Mahdavi and S.R. Allahkaram, Characteristics of Electrodeposited Cobalt and Titania Nano-Reinforced Cobalt Composite Coatings, Surf. Coat. Technol., 2013, 232, p 198–203. https://doi.org/10.1016/j.surfcoat.2013.05.007

    Article  CAS  Google Scholar 

  61. S. Hong, Y. Wu, Y. Zheng, B. Wang, W. Gao, and J. Lin, Microstructure and Electrochemical Properties of Nanostructured WC-10Co-4Cr Coating Prepared by HVOF Spraying, Surf. Coat. Technol., 2013, 235, p 582–588. https://doi.org/10.1016/j.surfcoat.2013.08.029

    Article  CAS  Google Scholar 

  62. H. Torbati-Sarraf, I. Ghamarian, B. Poorganji, and S.A. Torbati-Sarraf, An Investigation on the Role of Crystallographic Texture on Anisotropic Electrochemical Behavior of a Commercially Pure Nickel Manufactured by Laser Powder Bed Fusion (L-PBF) Additive Manufacturing, Electrochim. Acta, 2020, 354, 136694. https://doi.org/10.1016/j.electacta.2020.136694

    Article  CAS  Google Scholar 

  63. A. Toosinezhad, M. Alinezhadfar, and S. Mahdavi, Cobalt/Graphene Electrodeposits: Characteristics, Tribological Behavior, and Corrosion Properties, Surf. Coat. Technol., 2020, 385, 125418. https://doi.org/10.1016/j.surfcoat.2020.125418

    Article  CAS  Google Scholar 

  64. M.H. Johar, H. Torbati-Sarraf, M. Ahangari, and M. Saremi, Inhibiting effect of Benzotriazole on the Stress Corrosion Cracking of Cu-27%Ni Cupronickel and Cu-30%Zn Brass in Mattsson’s Solution, Mater. Lett., 2021, 293, 129735. https://doi.org/10.1016/j.matlet.2021.129735

    Article  CAS  Google Scholar 

  65. M. Takeda, N. Morihiro, R. Ebara, Y. Harada, R. Wang, and M. Kido, Corrosion Behavior of Thermally Sprayed WC Coating in Na2SO4 Aqueous Solution, Mater. Trans., 2002, 43, p 2860–2865. https://doi.org/10.2320/matertrans.43.2860

    Article  CAS  Google Scholar 

  66. A. Human, B. Roebuck, and H. Exner, Electrochemical Polarisation and Corrosion Behaviour of Cobalt and Co(W, C) Alloys in 1 N Sulphuric Acid, Mater. Sci. Eng. A, 1998, 241, p 202–210. https://doi.org/10.1016/S0921-5093(97)00492-9

    Article  Google Scholar 

  67. A.M. Human, and H.E. Exner, Electrochemical Behaviour of Tungsten-Carbide Hardmetals, Mater. Sci. Eng. A, 1996, 209, p 180–191. https://doi.org/10.1016/0921-5093(95)10137-3

    Article  Google Scholar 

  68. S. Lillard, D.M. Salgado, and S. Mehrazi, A One Dimensional Crevice Experiment for Determining the Critical Factors Contributing to Crevice Corrosion Stability and Repassivation, ECS Meeting Abstracts, 2018 https://doi.org/10.1149/MA2018-02/11/619

    Article  Google Scholar 

  69. R.S. Lillard and S. Mehrazi, Quantifying Alloy 625 Crevice Corrosion Using an Image Differencing Technique: Part III. The Transition from Diffusion to Activation Control and the Implications for the Measured Electrochemical Potentials, J. Electrochem. Soc., 2021, 168(2), p 021511. https://doi.org/10.1149/1945-7111/abe47b

  70. M.E. Orazem, N. Pébère, B. Tribollet, J.E. Soc, M.E. Orazem et al., Enhanced Graphical Representation of Electrochemical Impedance Data Service Enhanced Graphical Representation of Electrochemical, J. Electrochem. Soc., 2006, 153, p 128–136. https://doi.org/10.1149/1.2168377

    Article  CAS  Google Scholar 

  71. H. Hassannejad, M. Moghaddasi, E. Saebnoori, and A.R. Baboukani, Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy, J. Alloys Compd., 2017, 725, p 968–975. https://doi.org/10.1016/j.jallcom.2017.07.253

    Article  CAS  Google Scholar 

  72. A. Toosinezhad, M. Alinezhadfar, and S. Mahdavi, Cobalt / graphene electrodeposits: Characteristics, tribological behavior, and corrosion properties, Surf. Coat. Technol., 2020, 385, 125418. https://doi.org/10.1016/j.surfcoat.2020.125418

    Article  CAS  Google Scholar 

  73. S. Hong, Y. Wu, W. Gao, J. Zhang, Y. Zheng, and Y. Zheng, Slurry Erosion-Corrosion Resistance and Microbial Corrosion Electrochemical Characteristics of HVOF Sprayed WC-10Co-4Cr Coating for Offshore Hydraulic Machinery, Int. J. Refract. Met. Hard Mater., 2018, 74, p 7–13. https://doi.org/10.1016/j.ijrmhm.2018.02.019

    Article  CAS  Google Scholar 

  74. J.B. Cheng, X.B. Liang, Z.H. Wang, and B.S. Xu, Dry Sliding Friction and Wear Properties of Metallic Glass Coating and Martensite Stainless Coating, Tribol. Int., 2013, 60, p 140–146. https://doi.org/10.1016/j.triboint.2012.11.010

    Article  CAS  Google Scholar 

  75. H. Wang, X. Wang, X. Song, X. Liu, and X. Liu, Sliding Wear Behavior of Nanostructured WC-Co-Cr Coatings, Appl. Surf. Sci., 2015, 355, p 453–460. https://doi.org/10.1016/j.apsusc.2015.07.144

    Article  CAS  Google Scholar 

  76. M. Xie, S. Zhang, and M. Li, Comparative Investigation on HVOF Sprayed Carbide-Based Coatings, Appl. Surf. Sci., 2013, 273, p 799–805. https://doi.org/10.1016/j.apsusc.2013.03.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Torbati-Sarraf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddasi, M., Bozorg, M., Aghaie, E. et al. Corrosion and Wear Analysis of High-Velocity Oxy-Fuel Sprayed WC-10Co-4Cr and Colmonoy-6 Coatings on Nickel-Aluminum Bronze Alloy Substrate. J. of Materi Eng and Perform 30, 7564–7576 (2021). https://doi.org/10.1007/s11665-021-05965-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05965-0

Keywords

Navigation