Skip to main content
Log in

Effects of the Phase Content on Spallation Damage Behavior in Dual-Phase Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dual-phase steel (martensite (M)/ferrite (F)) samples with different phase content were dynamic loaded simultaneously by one-stage light gas gun. The velocity of free surface particles was measured by Doppler pin system (DPS) during the loading experiment. The soft recovered samples were investigated with optical microscopy, nanoindentation, and EBSD techniques to study the effect of the phase content on dynamic damage evolution in dual-phase steel. The results show that the sample two (1000°C/60 min + 780°C/30 min+quenching) has a higher M area percentage (77.2%), larger M size, and smaller number of M and less M/F interfaces compared with the sample one (1000°C/60 min + 740°C/30 min+quenching, with M area percentage of 45.51%). Due to the reflection and transmission of shock wave at M/F interface, tensile stress will be generated inside M with higher shock impedance. Under the same dynamic loading conditions, the more M/F interface means the greater the probability of void nucleation inside M. Thus the sample two with less M/F interfaces has lower nucleation density and lower spallation strength. The microcrack propagation resistance increases with the increase in the area percentage of M and the size of M, which results in the lower damage evolution rate of the sample two. Meanwhile, the size of M will affect the direction of microcracks propagation. Each M with larger size in the sample two is composed of several prior austenite (A) grains, and the orientation of the martensite packets in prior A grains is very different. Therefore, the microcrack propagation in the sample two is limited to different regions, the direction of microcracks propagation is easy to be deflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Griffith, The Phenomenon of Repture and Flow in Solids, Philos. Trans. R. Soc. Lond., 1921, A221, p 163–197.

    Google Scholar 

  2. L. Davison and R.A. Graham, Shock Compression of Solids, Phys. Rep., 1979, 55(4), p 255–379.

    Article  CAS  Google Scholar 

  3. D.R. Curran, L. Seaman and D.A. Shockley, Dynamic Failure of Solids, Phys. Rep., 1987, 147, p 253–388.

    Article  CAS  Google Scholar 

  4. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994.

    Book  Google Scholar 

  5. T.H. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov and A.V. Utkin, Spall Fracture, Springer, New York, 2003.

    Google Scholar 

  6. S. Christy, H.R. Pak and M.A. Meyers, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Marcel Dekker, New York, 1986.

    Google Scholar 

  7. J.P. Escobedo, D. Denniskoller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks and R.A. Lebensohn, Effects of Grain Size and Boundary Structure on the Dynamic Tensile Response of copper, J. Appl. Phys., 2011, 110, p 033513–033526.

    Article  CAS  Google Scholar 

  8. J.P. Escobedo, E.K. Cerreta, D. Denniskoller, B.M. Patterson, R.A. Lebensohn and C.A. Bronkhorst, Effects of Microstructure and Shock Loading Conditions on the Damage Behavior of Polycrystalline Copper, EPJ Web Conf., 2012, 26, p 02008.

    Article  Google Scholar 

  9. S. Razorenov, G. Kanel, A. Savinykh and V. Fortov, Large Tensions and Strength of IRON in Different Structure States, AIP Conf. Proc., 2006, 845, p 650–653.

    Article  CAS  Google Scholar 

  10. K. Mackenchery, R.R. Valisetty, R.R. Namburu, A. Stukowski, A.M. Rajendran and A.M. Dongare, Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu, J. Appl. Phys., 2016, 119, p 817–822.

    Article  CAS  Google Scholar 

  11. J.W. Wilkerson and K.T. Ramesh, Unraveling the Anomalous Grain Size Dependence of Cavitation, Phys. Rev. Lett., 2016, 117, p 21.

    Article  CAS  Google Scholar 

  12. A.G. Perezbergquist, J.P. Escobedo, C.P. Trujillo, E.K. Cerreta, G.T. Gray III. and C. Brandl, The Role of the Structure of Grain Boundary Interfaces During Shock Loading, AIP Conf. Proc., 2012, 1426, p 1359–1362.

    Article  CAS  Google Scholar 

  13. Y. Yang, Z.Q. Peng, X.Z. Chen, Z.L. Guo, T.G. Tang, H.B. Hu and Q.M. Zhang, Spall Behaviors of High Purity Copper Under Sweeping Detonation, Mater. Sci. Eng. A, 2016, 651, p 636–645.

    Article  CAS  Google Scholar 

  14. S.J. Fensin, J.P. Escobedo-Diaz, C. Brandl, E.K. Cerreta, G.T. Gray III., T.C. Germann and S.M. Valone, Effect of Loading Direction on Grain Boundary Failure Under Shock Loading, Acta Mater., 2014, 64, p 113–122.

    Article  CAS  Google Scholar 

  15. A.D. Brown, L. Wayne, Q. Pham, K. Krishnan, P. Peralta, S.N. Luo, B.M. Patterson, S. Greenfield, D. Byler, K.J. McClellan, A. Koskelo, R. Dickerson and X.H. Xiao, Microstructural Effects on Damage Nucleation in Shock-Loaded Polycrystalline Copper Metal, Metall. Mater. Trans. A, 2015, 46, p 4539–4547.

    Article  CAS  Google Scholar 

  16. K. Krishnan, A.D. Brown, L. Wayne, J. Vo, S. Opie, H. Lim, P. Peralta, S.N. Luo, D. Byler, K.J. McClellan, A. Koskelo and R. Dickerson, Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals, Metall. Mater. Trans. A, 2015, 46, p 4527–4538.

    Article  CAS  Google Scholar 

  17. S.J. Fensin, S.M. Valone, E.K. Cerreta, J.P. Escobedodiaz, G.T. Gray III., K. Kang and J. Wang, Effect of Grain Boundary Structure on Plastic Deformation During Shock Compression Using Molecular Dynamics, Model. Simul. Mater. Sci. Eng., 2012, 21, p 1–12.

    Google Scholar 

  18. L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, A. Koskelo and R. Dickerson, Statistics of Weak Grain Boundaries for Spall Damage in Polycrystalline Copper, Scr. Mater., 2010, 63, p 1065–1068.

    Article  CAS  Google Scholar 

  19. P. Peralta, S. DiGiacomo, S. Hashemian, S.N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler and K.J. Mcclellan, Characterization of Incipient Spall Damage in Shocked Copper Multicrystals, Int. J. Damage Mech., 2009, 18, p 393–413.

    Article  CAS  Google Scholar 

  20. Y. Yang, J.X. Chen, Z.Q. Peng, Z.L. Guo, T.G. Tang, H.B. Hu and Y.N. Hu, X-ray Quantitative Analysis on Spallation Response in High Purity Copper Under Sweeping Detonation, Mater. Sci. Eng. A, 2016, 667, p 54–60.

    Article  CAS  Google Scholar 

  21. Y. Yang, J.X. Chen, Z.L. Guo, T.G. Tang, H.B. Hu and Y.N. Fu, 3-D Characterization of Incipient Spallation Response in Cylindrical Copper Under Sweeping Detonation, J. Mater. Res., 2017, 32, p 1499–1505.

    Article  CAS  Google Scholar 

  22. Y. Yang, Z. Jiang, J.X. Chen, Z.L. Guo, T.G. Tang and F.B. Hu, The Characteristics of Void Distribution in Spalled High Purity Copper Cylinder Under Sweeping detonation, Philos. Mag., 2018, 98, p 752–765.

    Article  CAS  Google Scholar 

  23. Y. Yang, Z.Q. Peng, Z.L. Guo, S.H. Luo, T.G. Tang, H.B. Hu and Q.M. Zhang, Multidimensional Study on Spall Behavior of high-Purity Copper Under Sliding Detonation, Metall. Mater. Trans. A, 2015, 46, p 4070–4077.

    Article  CAS  Google Scholar 

  24. A.G. Perez-Bergquist and J.P. Escobedo, The Role of the Structure of Grain Boundary Interfaces During Shock Loading, AIP Conf. Proc., 2012, 142(6), p 1359–1362.

    Article  CAS  Google Scholar 

  25. N.A. Pedrazas, D.L. Worthington, D.A. Dalton, P.A. Sherek, S.P. Steuck and H.J. Quevedo, Effects of Microstructure and Composition on Spall Fracture in Aluminum, Mater. Sci. Eng. A, 2012, 536, p 117–123.

    Article  CAS  Google Scholar 

  26. W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter and S.J. Zheng, Deformation and Failure of Shocked Bulk Cu–Nb Nanolaminates, Acta Mater., 2014, 63, p 150–161.

    Article  CAS  Google Scholar 

  27. S.J. Fensin, E.K. Walker, E.K. Cerreta, C.P. Trujillo, D.T. Martinez and G.T. Gray III., Dynamic Failure in Two-Phase Materials, J. Appl. Phys., 2015, 118, p 235305.

    Article  CAS  Google Scholar 

  28. S.J. Fensin, D.R. Jones, E.K. Walker, A. Farrow, S.D. Imhoff, K. Clarke, C.P. Trujillo, D.T. Martinez, G.T. Gray III. and E.K. Cerreta, The Effect of Distribution of Second Phase on Dynamic Damage, J. Appl. Phys., 2016, 120, p 085901.

    Article  CAS  Google Scholar 

  29. S.J. Fensin, S.M. Valone, E.K. Cerreta, P.A. Rigg, G.T. Gray III, Nucleation and evolution of dynamic damage at Cu/Pb interfaces using molecular dynamics. In: Shock Compression of Condensed Matter: Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2015, 1793, p 070017.

  30. S.J. Fensin, J.P. Escobedo, G.T. Gray III., B.M. Patterson, C.P. Trujillo and E.K. Cerreta, Dynamic Damage Nucleation and Evolution in Multiphase Materials, J. Appl. Phys., 2014, 115, p 203516–203523.

    Article  CAS  Google Scholar 

  31. Y. Yang, C. Wang, X.Z. Chen, H.B. Hu, K.G. Chen and Y.N. Fu, Effects of the Phase Interface on Spallation Damage Nucleation and Evolution in Multiphase Alloy, J. Alloy. Compd., 2018, 740, p 321–329.

    Article  CAS  Google Scholar 

  32. Y. Yang, C. Wang, X.Z. Chen, K.G. Chen, H.B. Hu and Y.N. Fu, The Void Nucleation Mechanism Within Lead Phase During Spallation of Leaded Brass, Philos. Mag., 2018, 98(21), p 1975–1990.

    Article  CAS  Google Scholar 

  33. Y. Yang, Z. Jiang, C. Wang, H.B. Hu, T.G. Tang, H.S. Zhang and Y.N. Fu, Effects of the Phase Interface on Initial Spallation Damage Nucleation and Evolution in Dual Phase Titanium Alloy, Mater. Sci. Eng. A, 2018, 731, p 385–393.

    Article  CAS  Google Scholar 

  34. Y. Yang, S.J. Yang and H.M. Wang, Effects of the Phase Content on Dynamic Damage Evolution in Fe50Mn30Co10Cr10 High Entropy Alloy, J. Alloy. Compd., 2021, 851, p 156883.

    Article  CAS  Google Scholar 

  35. Y. Yang, H.M. Wang, C. Wang and L.W. Yang, Effects of the Phase Interface on Spallation Damage Nucleation and Evolution in Dual-Phase Steel, Steel Res. Int., 2020, 91, p 1900583.

    Article  CAS  Google Scholar 

  36. Y. Yang, S.J. Yang and H.M. Wang, Effects of Microstructure on the Evolution of Dynamic Damage of Fe50Mn30Co10Cr10High Entropy Alloy, Mater. Sci. Eng. A, 2020, 802, p 140440.

    Article  CAS  Google Scholar 

  37. A. Bag, K.K. Ray and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A, 1999, 30(5), p 1193–1202.

    Article  Google Scholar 

  38. W.Y. Liu and W.S. Wang, Application of Lightweight Technology in Automobile Body (in Chinese), Automot. Eng., 2011, 2, p 50–54.

    Google Scholar 

  39. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann et al., An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45, p 391–431.

    Article  CAS  Google Scholar 

  40. K.T. Ramesh, High Rates and Impact Experiments, Springer Handbook of Experimental Solid Mechanics, Springer, US, 2008.

    Google Scholar 

  41. J. Weng, H. Tan, X. Wang, Y. Ma, S. Hu and X. Wang, Optical-Fiber Interferometer for Velocity Measurements with Picosecond Resolution, Appl. Phys. Lett., 2006, 89, p 4669.

    Google Scholar 

  42. Y.G. Wang and H.L. He, Study on the Dynamic Tensile Fracture and Critical Damage of 20 # steel, Chin. J. Solid Mech., 2008, 29(4), p 354–360.

    Google Scholar 

  43. W.C. Oliver and G.M. Pharr, Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(06), p 1564–1583.

    Article  CAS  Google Scholar 

  44. A. Ghaheri, A. Shafyei and M. Honarmand, Effects of Inter-Critical Temperatures on Martensite Morphology, Volume Fraction and Mechanical Properties of Dual-Phase Steels Obtained From Direct and Continuous Annealing Cycles, Mater. Des., 2014, 62(10), p 305–319.

    Article  CAS  Google Scholar 

  45. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54(5), p 1279–1288.

    Article  CAS  Google Scholar 

  46. L. Seaman, D.R. Curran and D.A. Shockey, Computational Models for Ductile and Brittle Fracture, J. Appl. Phys., 1976, 47(11), p 4814–4826.

    Article  CAS  Google Scholar 

  47. E.B. Zaretsky and G.I. Kanel, Response of Copper to Shock-Wave Loading at Temperatures Up to the Melting Point, J. Appl. Phys., 2013, 114(8), p S9-73.

    Article  CAS  Google Scholar 

  48. Y.G. Wang and H.L. He, Investigation of PRECURSOR Decay and Stress Relaxation in Shock-Compressed 20 Steel, Chin. J. High Press. Phys., 2007, 21(1), p 35–39.

    Google Scholar 

  49. C. Li, B. Li, J.Y. Huang, H.H. Ma, M.H. Zhu, J. Zhu and S.N. Luo, Spall Damage of a Mild Carbon Steel: Effects of Peak Stress, Strain Rate and Pulse Duration, Mater. Sci. Eng. A, 2016, 660, p 139–147.

    Article  CAS  Google Scholar 

  50. C. Li, J.Y. Huang, X.C. Tang, H.W. Chai, X.H. Xiao, Z.D. Feng and S.N. Luo, Effects of Structural Anisotropy on Deformation and Damage of a Duplex Stainless Steel Under High Strain Rate Loading, Mater. Sci. Eng. A, 2017, 705, p 265–272.

    Article  CAS  Google Scholar 

  51. S.A. Novikov, Spall Strength of Materials Under Shock Load, J. Appl. Mech. Tech. Phys., 1967, 3, p 109.

    Google Scholar 

  52. G.V. Stepanov, Spall Fracture of Metals by Elastic-Plastic Loading Waves, Probl. Strength, 1976, 8, p 66–70.

    Google Scholar 

  53. G.I. Kanel, Distortion of the Wave Profiles in an Elastoplastic Body Upon Spalling, J. Appl. Mech. Tech. Phys., 2001, 42(2), p 358–362.

    Article  Google Scholar 

  54. J.P. Escobedo, E.N. Brown, C.P. Trujillo and G.T. Gray, The Effect of Shock-Wave Profile on Dynamic Brittle Failure, J. Appl. Phys., 2013, 113(10), p 753.

    Article  CAS  Google Scholar 

  55. X.Y. Pei, H. Peng, H.L. He and P. Li, Study on the Effect of Peak Stress on Dynamic Damage Evolution of High Pure Copper, Acta Phys. Sin., 2015, 64(5), p 1–6.

    Google Scholar 

  56. G.I. Kanel, S.V. Razorenov, A. Bogatch, A.V. Utkin and D.E. Grady, Simulation of Spall Fracture of Aluminum and Magnesium Over a Wide Range of Load Duration and Temperature, Int. J. Impact Eng., 1997, 20, p 467–478.

    Article  Google Scholar 

  57. S.K. Yerra, G. Martin, M. Véron, Y. Bréchet, J.D. Mithieux, L. Delannay and T. Pardoen, Ductile Fracture Initiated by Interface Nucleation in Two-Phase Elastoplastic Systems, Eng. Fract. Mech., 2013, 102, p 77–100.

    Article  Google Scholar 

  58. N. Saeidi, F. Ashrafizadeh, B. Niroumand and F. Barlat, EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel, J. Mater. Eng. Perform., 2015, 24(1), p 53–58.

    Article  CAS  Google Scholar 

  59. X. Liu, F. Zhong, J.X. Zhang, M.X. Zhang, M.K. Kang and Z.Q. Guo, Lattice-Parameter Variation with Carbon Content of Martensite. I. X-ray-Diffraction Experimental Study, Phys. Rev. B, 1995, 52(14), p 9970–9978.

    Article  CAS  Google Scholar 

  60. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, The Morphology and Crystallography of Lath martensite in Fe-C alloys, Acta Mater., 2003, 51(6), p 1789–1799.

    Article  CAS  Google Scholar 

  61. C.M. Deng, Z.D. Li, X.J. Sun, Y. Zhou and Q.L. Yong, Influence Mechanism of High Angle Boundary on Propagation of Cleavage Cracks in Low Carbon Lath Martensite Steel, Mater. Mech. Eng., 2014, 38(6), p 20–24.

    CAS  Google Scholar 

  62. G.R. Irwin, Fracture Strengths Relative to Onset and Arrest of Crack Propagation, Proc. Am. Soc. Test. Meter., 1958, 58, p 640–657.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51871243, 51574290), Hunan Provincial Natural Science Foundation of China (No. 2019JJ40381). All data, models, and code generated or used during the study appear in the submitted article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, H. & Wang, C. Effects of the Phase Content on Spallation Damage Behavior in Dual-Phase Steel. J. of Materi Eng and Perform 30, 5614–5624 (2021). https://doi.org/10.1007/s11665-021-05811-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05811-3

Keywords

Navigation