Skip to main content
Log in

Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microalloying elements like Nb and V are added to modified 9Cr-1Mo steel to ensure excellent creep resistance by the formation of fine MX precipitates during tempering treatment. The effect of those elements on the evolution of microstructure (and texture) in hot-deformed steel has hardly been studied. Industrial processing of modified 9Cr-1Mo steel often develops deformed and elongated prior-austenite grain structure, which can be detrimental from property point of view. The present study shows that the formation of such structure can primarily be attributed to the pinning effect from strain-induced Nb(C,N) precipitation, which can effectively retard the static recrystallization of deformed-γ at high-deformation temperature and short inter-pass times (~10 seconds). Based on the results, the application of either heavy deformation pass at high-temperature or multiple-lighter passes maintaining sufficient inter-pass interval (30 to 50 seconds) is recommended to achieve fine and equiaxed γ-grain structure by dynamic recrystallization and static recrystallization, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.L. Klueh: Int. Mater. Rev., 2005, vol. 50, pp. 287–310.

    Article  Google Scholar 

  2. R.L. Klueh: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 239–50.

    Article  Google Scholar 

  3. T. Onizawa, T. Wakai, M. Ando, and K. Aoto: Nucl. Eng. Des., 2008, vol. 238, pp. 408–16.

    Article  Google Scholar 

  4. R.L. Klueh, N. Hashimoto, and P.J. Maziasz: J. Nucl. Mater., 2007, vol. 367–370, pp. 48–53.

    Article  Google Scholar 

  5. V.S. Dwivedi and B.K. Jha: J. Mater. Sci. Lett., 1998, vol. 17, pp. 1353–56.

    Article  Google Scholar 

  6. W.B. Jones, C.R. Hills, and D.H. Polonis: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1049–58.

    Article  Google Scholar 

  7. W.F. Zhang, W. Sha, W. Yan, W. Wang, Y.Y. Shan, and K. Yang: Mater. Sci. Eng. A, 2014, vol. 604, pp. 207–14.

    Article  Google Scholar 

  8. D. Samantaray, C. Phaniraj, A.K. Bhaduri, S. Mandal, and S.K. Albert: Mater. Sci. Eng. A, 2013, vol. 560, pp. 170–77.

    Article  Google Scholar 

  9. D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Des., 2011, vol. 32, pp. 716–22.

    Article  Google Scholar 

  10. D. Samantaray, S. Mandal, and A.K. Bhaduri: Comput. Mater. Sci., 2009, vol. 47, pp. 568–76.

    Article  Google Scholar 

  11. J.-H. Baek, S.-H. Kim, C.-B. Lee, and D.-H. Hahn: Met. Mater. Int., 2009, vol. 15, pp. 565–73.

    Article  Google Scholar 

  12. V. Homolová, J. Janovec, P. Záhumenský, and A. Výrostková: Mater. Sci. Eng. A, 2003, vol. 349, pp. 306–12.

    Article  Google Scholar 

  13. D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5204–11.

    Article  Google Scholar 

  14. C. Phaniraj, D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6066–71.

    Article  Google Scholar 

  15. D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Des., 2010, vol. 31, pp. 981–84.

    Article  Google Scholar 

  16. S. A. Krishnan, C. Phaniraj, C. Ravishankar, A.K. Bhaduri, and P.V. Sivaprasad: Int. J. Press. Vessel. Pip., 2011, vol. 88, pp. 501–06.

    Article  Google Scholar 

  17. J. Adamczyk and M. Opiela: J. Mater. Process. Technol., 2004, vol. 157–158, pp. 456–61.

    Article  Google Scholar 

  18. B. Tian, C. Lind, and O. Paris: Mater. Sci. Eng. A, 2003, vol. 358, pp. 44–51.

    Article  Google Scholar 

  19. L. Gavard, F. Montheillet, and J. Le Coze: Mater. Trans. JIM, 2000, vol. 1, pp. 113–15.

    Article  Google Scholar 

  20. T. Karthikeyan, V. ThomasPaul, S. Saroja, A. Moitra, G. Sasikala, M. Vijayalakshmi: J. Nucl. Mater., 2011, vol. 419, pp. 256–62

    Article  Google Scholar 

  21. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong: Scripta Mater., 2008, vol. 58, pp. 492–95.

    Article  Google Scholar 

  22. T. Hanamura, F. Yin, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610–17.

    Article  Google Scholar 

  23. J.W. Morris: ISIJ Int., 2011, vol. 51, pp. 1569–75.

    Article  Google Scholar 

  24. A. Chatterjee, A. Moitra, A.K. Bhaduri, R. Mitra, and D. Chakrabarti: Eng. Fract. Mech., 2015, vol. 149, pp. 74–88.

    Article  Google Scholar 

  25. N. Hansen and D.J. Jensen: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1999, vol. 357, pp. 1447–69.

    Google Scholar 

  26. A. Haldar and R.K. Ray: Mater. Sci. Eng. A, 2005, vol. 391, pp. 402–07.

    Article  Google Scholar 

  27. G.H. Akbari, C.M. Sellars, and J.A. Whiteman, Acta Mater., 1997, vol. 45, pp. 5047–58.

  28. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 697–705.

    Article  Google Scholar 

  29. A. Ghosh, S. Patra, A. Chatterjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2755–72.

    Article  Google Scholar 

  30. R.K. Ray, J.J. Jonas, M.P. Butrón-Guillén, and J. Savoie: ISIJ Int., 1994, vol. 34, pp. 927–42.

    Article  Google Scholar 

  31. K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto: ISIJ Int., 1995, vol. 35, pp. 86–91.

    Article  Google Scholar 

  32. H.-J. Kestenbach and E.V. Morales: Acta Microsc., 1998, vol. 7, pp. 22–33.

    Google Scholar 

  33. A.J. Deardo: Int. Mater. Rev., 2003, vol. 48, pp. 371–402.

    Article  Google Scholar 

  34. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.

    Article  Google Scholar 

  35. S.F. Medina: Acta Mater., 2015, vol. 84, pp. 202–07.

    Article  Google Scholar 

  36. S.F. Medina, A. Quispe, and M. Gomez: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45A, pp. 1524–39.

    Article  Google Scholar 

  37. M. Gomez, S.F. Medina, and J.I. Chaves: Mater. Sci. Forum, 2007, vol. 550, pp. 417–22.

    Article  Google Scholar 

  38. M. Mukherjee, U. Prahl, and W. Bleck: Acta Mater., 2014, vol. 71, pp. 234–54.

    Article  Google Scholar 

  39. A. Quispe, S.F. Medina, M. Gómez, and J.I. Chaves: Mater. Sci. Eng. A, 2007, vol. 447, pp. 11–18.

    Article  Google Scholar 

  40. Z. Wenhui, S. Shuhua, Z. Deli, W. Baozhong, W. Zhenhua, and F. Wantang: Mater. Des., 2011, vol. 32, pp. 4173–79.

    Article  Google Scholar 

  41. X. Huang, H. Zhang, Y. Han, W. Wu, and J. Chen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 485–90.

    Article  Google Scholar 

  42. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–35.

    Article  Google Scholar 

  43. S. Morito, J. Nishikawa, and T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475–77.

    Article  Google Scholar 

  44. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91–94.

    Article  Google Scholar 

  45. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

  46. M.G. Akben, B. Bacroix, and J.J. Jonas: Acta Metall., 1983, vol. 31, pp. 161–74.

    Article  Google Scholar 

  47. B. Pereda, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe: ISIJ Int., 2007, vol. 47, pp. 860–68.

    Article  Google Scholar 

  48. H.L. Andrade, M.G. Akben, and J.J. Jonas: Metall. Trans. A, 1983, vol. 14, pp. 1967–77.

    Article  Google Scholar 

  49. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri: Mater. Sci. Eng. A, 2014, vol. 618, pp. 219–31.

    Article  Google Scholar 

  50. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri: Mater. Sci. Eng. A, 2015, vol. 630, pp. 58–70.

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support received from the Board of Research in Nuclear Sciences, India (BRNS/2759). Authors would like to thank Dr, Aniruddha Moirta from Indira Gandhi Centre for Atomic Research (IGCAR) for providing the material. Acknowledgements to Indian Institute of Technology, Kharagpur, for the provision of research facilities in the Central Research Facility as well as SGDRI equipment grant. Authors thank Dr. Mainak Ghosh from National Metallurgical Laboratory, Jamshedpur (CSIR-NML) for performing TEM studies on some samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arya Chatterjee.

Additional information

Manuscript submitted December 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Dutta, A., Sk, M.B. et al. Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel. Metall Mater Trans A 48, 2410–2424 (2017). https://doi.org/10.1007/s11661-017-4039-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4039-4

Keywords

Navigation