Skip to main content
Log in

Corrosion Behavior of Ni–Fe–Mo Deposits Obtained under Different Electrodeposition Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ternary Ni–Fe–Mo coatings have been proposed for anti-corrosion applications to replace chromium coating. To analyze the effects of deposition current and duration six different Ni–Fe–Mo films have been electrodeposited on copper foils. Their morphologies, structures, and chemical compositions of the films have been characterized. Potentiodynamic polarization is applied on each coating and electrochemical impedance spectroscopy is applied to discuss their corrosion resistances. Ni–Fe–Mo film that is produced at the lowest current density (5 mA.cm-2) for 5 min. exhibits a more positive corrosion potential and higher charge transfer resistance. To shed some lights on aging mechanism, the film has been aged for 70 days. The enhanced protective properties of the film is attributed to its fine, crack free morphology with high Mo content. The existences of Fe2O3, MoO2, MoO3, and NiO in the passive layer substantiate the improved barrier protection ability of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Quintana, M. Varea, S. Guerrero, M.D. Suriñach, J. Baró and E. Sort, Pellicer, Structurally and Mechanically Tunable Molybdenum Oxide Films and Patterned Submicrometer Structures by Electrodeposition, Electrochim. Acta, 2015, 173, p 705–714.

    Article  CAS  Google Scholar 

  2. K. Zhang, K. Zhang, H.X. Li and G.N. Chen, Interface Fracture Behavior of Electroplated Coating on Metal Substrate Under Compressive Strain, J. Mater. Process. Technol., 2009, 209, p 1337–1341.

    Article  CAS  Google Scholar 

  3. B. Navinsek, P. Panjan and I. Milosev, PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes, Surf. Coat. Tech., 1999, 116, p 476–487.

    Article  Google Scholar 

  4. H.C. Liu and S.K. Yen, Characterization of Electrolytic Co3O4 Thin Films as Anodes for Lithium-Ion Batteries, J. Power Sources, 2007, 166, p 478–484.

    Article  CAS  Google Scholar 

  5. S.A.N. Mehrabani, R. Ahmadzadeh, N. Abdian and A.T. Tabrizi, Hossein Aghajani, Synthesis the Ni-GO Nanocomposite Coatings: Corrosion Evaluation, Surf. Interfaces., 2020, 20, p 100546.

    Article  Google Scholar 

  6. Y. Wang, Z.W. Fu and Q.Z. Qin, A Nanocrystalline Co3O4 Thin Film Electrode for Li-Ion Batteries, Thin Solid Films, 2003, 441, p 19–24.

    Article  CAS  Google Scholar 

  7. T. Seike and J. Nagai, Electrochromism of 3d Transition Metal Oxides, Sol. Energ. Mater., 1991, 22, p 107–117.

    Article  CAS  Google Scholar 

  8. C.L. Liao, Y.H. Lee, S.T. Chang and K.Z. Fung, Structural Characterization and Electrochemical Properties of RF-Sputtered Nanocrystalline Co3O4 Thin-Film Anode, J. Power Sources, 2006, 158, p 1379–1385.

    Article  CAS  Google Scholar 

  9. S.L. Choua, J.Z. Wang, H.K. Liua and S.X. Dou, Electrochemical Deposition of Porous Co3O4 Nanostructured Thin Film for Lithium-ion Battery, J. Power Sources, 2008, 182, p 359–364.

    Article  Google Scholar 

  10. H.A. Ramezani-Varzaneh, S.R. Allahkaram and M. Isakhani-Zakaria, Effects of Phosphorus Content on Corrosion Behavior of Trivalent Chromium Coatings in 3.5 wt.% NaCl Solution, Surf. Coat. Tech., 2014, 244, p 158–165.

    Article  CAS  Google Scholar 

  11. P.C. Wynn and C.V. Bishop, Replacing Hexavalent Chromium, J. Electrochem. Soc., 2001, 79, p B27–B30.

    CAS  Google Scholar 

  12. F. Safizadeh, E. Ghali and G. Houlachi, Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions–a Review, Int. J. Hydrog. Energy, 2015, 40, p 256–274.

    Article  CAS  Google Scholar 

  13. A. Brenner, Electrodeposition of Alloys, Academic Press, New York, 1963.

    Google Scholar 

  14. E.J. Podlaha and D. Landolt, Induced Codeposition Ill. Molybdenum Alloys with Nickel, Cobalt, and Iron, J. Electrochem. Soc., 1997, 144, p 1672–1679.

    Article  CAS  Google Scholar 

  15. E.J. Podlaha and D. Landolt, Induced Codeposition II. A Mathematical Model Describing the Electrodeposition of Ni–Mo Alloys, J. Electrochem. Soc., 1996, 143, p 893–899.

    Article  CAS  Google Scholar 

  16. R. Schulz, J. Huot and M. Trudeau, Nanocrystalline Ni–Mo Alloys and their Application in Electro Catalysis, J. Mater. Sci., 1994, 9, p 2998–3008.

    CAS  Google Scholar 

  17. J.G. Highfield, E. Claude and K. Oguro, Electrocatalytic Synergism in Ni/Mo Cathodes for Hydrogen Evolution in Acid Medium: a New Model, Electrochim. Acta, 1999, 44, p 2805–2814.

    Article  CAS  Google Scholar 

  18. Y. Zeng, L. Zelin, M. Ming and S. Zhou, In Situ Surface Raman Study of the Induced Codeposition Mechanism of Ni–Mo Alloys, Electrochem. Commun., 2000, 2, p 36–38.

    Article  CAS  Google Scholar 

  19. P. Prioteasa, L. Anicai and T. Visan, Synthesis and Corrosion Characterization of Electrodeposited Ni–Mo Alloys Obtained from Aqueous Solutions, UPB Sci. Bull. Ser. B Chem. Mater. Sci., 2010, 72, p 11–24.

    CAS  Google Scholar 

  20. C.C. Hu and C.Y. Weng, Hydrogen Evolving Activity on Nickel–Molybdenum Deposits Using Experimental Strategies, J. Appl. Electrochem., 2000, 30, p 499–506.

    Article  CAS  Google Scholar 

  21. Y. Zeng, S.W. Yao, X.O. Cao, H.X. Huang, Z.Y. Zhong and H.T. Guo, Electrodeposition Mechanism of Ni–Mo–P Alloy in the Solution of Ammonia Citrate, Chin. J. Chem., 1997, 15, p 193–200.

    Article  CAS  Google Scholar 

  22. L.S. Sanches, S.H. Domingues, A. Carubelli and L.H. Mascaro, Electrodeposition of Ni–Mo and Fe–Mo Alloys from Sulfate-Citrate Acid Solutions, J. Braz. Chem. Soc., 2003, 14, p 556–563.

    Article  CAS  Google Scholar 

  23. J. Winiarski, W. Tylus, M.S. Krawczyk and B. Szczygieł, The Influence of Molybdenum on the Electrodeposition and Properties of Ternary Zn–Fe–Mo Alloy Coatings, Electrochim. Acta, 2016, 196, p 708–726.

    Article  CAS  Google Scholar 

  24. K.M. Hyie, M.Z. Zabri, N.R.N. Roseley and N.R.N.M. Masdek, Effect of Deposition Time on Wear and Corrosion Performance of Co–Ni–Fe Alloy Coated Mild Steel, J. Mater. Res., 2016, 31, p 1848–1856.

    Article  CAS  Google Scholar 

  25. S.M. Yusof, A. Hadi and J. Jai, Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn–Ag–Cu Developed by Electrodeposition: Effect of Current Density Investigation, Int. J. Sci. Eng., 2013, 5, p 51–55.

    Google Scholar 

  26. R.A.C. Santana, S. Prasad, E.S. Moura, A.R.N. Campos, G.P. Silva and P. Lima-Neto, Studies on Electrodeposition of Corrosion Resistant Ni–Fe–Mo Alloy, J. Mater. Sci., 2007, 42, p 2290–2296.

    Article  CAS  Google Scholar 

  27. M. Haerifar and M. Zandrahimi, Effect of Current Density and Electrolyte pH on Microstructure of Mn–Cu Electroplated Coatings, Appl. Surf. Sci., 2013, 284, p 126–132.

    Article  CAS  Google Scholar 

  28. J. Winiarski, B. Cieślikowska, W. Tylus, P. Kunicki and B. Szczygieł, Corrosion of Nanocrystalline Nickel Coatings Electrodeposited from Choline Chloride: Ethylene GLYCOL Deep Eutectic Solvent Exposed in 0.05M NaCl Solution, Appl. Surf. Sci., 2019, 470, p 331–339.

    Article  CAS  Google Scholar 

  29. M. Matlosz, Competitive Adsorption Effects in the Electrodeposition of Iron-Nickel Alloys, J. Electrochem. Soc., 1993, 140, p 2272–2279.

    Article  CAS  Google Scholar 

  30. A. Shaaban, S. Hayashi and K. Azumi, Effects of a NiFe Co-Deposited Layer on α-Al2O3 Formation by Oxidation of a β-NiAl Alloy, Surf. Coat. Tech., 2017, 325, p 673–681.

    Article  CAS  Google Scholar 

  31. A. Laszczyńsk, W. Tylus, B. Szczygieł and I. Szczygie, Influence of Post−Deposition Heat Treatment on the Properties of Electrodeposited Ni−Mo Alloy Coatings, Appl. Surf. Sci., 2018, 462, p 432–443.

    Article  Google Scholar 

  32. N.P. Wasekara, S. Verulkarb, M.V.N. Vamsic and G. Sundararajand, Influence of Molybdenum on the Mechanical Properties, Electrochemical Corrosion and Wear Behavior of Electrodeposited Ni–Mo Alloy, Surf. Coat. Tech., 2019, 370, p 298–310.

    Article  Google Scholar 

  33. Y. Lai, F. Liu, J. Li, Z. Zhang and Y. Liu, Nucleation and Growth of Selenium Electrodeposition onto tin Oxide Electrode, J. Electroanal. Chem., 2010, 639, p 187–192.

    Article  CAS  Google Scholar 

  34. W.D. Sides and Q. Huang, Electrochemical Nucleation and Growth of Antimony Telluride Binary Compound on Gold Substrate, J. Electrochem. Soc., 2018, 165, p D568–D573.

    Article  CAS  Google Scholar 

  35. B. Roozbehania, M.H. Allahyarzadeha, A. Ashrafib, S.R. Shadizadehc and A. Seddighian, Electropolishing Effect on Corrosion Resistance of Electrodeposited Nanocrystalline Ni–Mo Alloy Coatings in NaCl Solution, ECS Trans., 2013, 45, p 65–67.

    Article  Google Scholar 

  36. R. Mousavi, M.E. Bahrololoom, F. Deflorian and L. Ecco, Improvement of Corrosion Resistance of Ni–Mo Alloy Coatings: Effect of Heat Treatment, Appl. Surf. Sci., 2016, 364, p 9–14.

    Article  CAS  Google Scholar 

  37. H. Luo, Z. Li, A.M. Mingers and D. Raabe, Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy Compared with 304 Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 2018, 134, p 131–139.

    Article  CAS  Google Scholar 

  38. S. Costovici, A.C. Mane, T. Visan and L. Anicai, Investigation of Ni–Mo and Co–Mo Alloys Electrodeposition Involving Choline Chloride Based Ionic Liquids, Electrochim. Acta, 2016, 207, p 97–111.

    Article  CAS  Google Scholar 

  39. N. Imaz, M. Ostra, M. Vidal, J.A. Díez, M. Sarret and E. García-Lecina, Corrosion Behaviour of Chromium Coatings Obtained by Direct and Reverse Pulse Plating Electrodeposition in NaCl Aqueous Solution, Corros. Sci., 2014, 78, p 251–259.

    Article  CAS  Google Scholar 

  40. A. Laszczyńska, W. Tylus, J. Winiarski and I. Szczygieł, Evolution of Corrosion Resistance and Passive Film Properties of Ni–Mo Alloy Coatings During Exposure to 0.5 M NaCl Solution, Surf. Coat. Tech., 2017, 317, p 26–37.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Prof. Dr. Talip Alp for carefully reading the manuscript and useful suggestion. The authors also thank Prof. Dr. Ozgul Keles and Prof. Dr. Kursat Kazmanlı for their helps. The authors also acknowledge the supports of Semih Durmuş and Prof. Dr. Gurkan Ozturk for their supports in MS-ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deniz Karahan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, R., Karahan, B.D. Corrosion Behavior of Ni–Fe–Mo Deposits Obtained under Different Electrodeposition Conditions. J. of Materi Eng and Perform 30, 5593–5602 (2021). https://doi.org/10.1007/s11665-021-05805-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05805-1

Keywords

Navigation