Skip to main content
Log in

Parametric Influence of Friction Stir Processing on Microstructural Evolution and Tensile Behavior of AZ31/Ti-6Al-4V Magnesium Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Titanium alloy Ti-6Al-4V particles were used as reinforcement for AZ31B magnesium metal matrix composites (Mg MMCs) which were synthesized via friction stir processing (FSP). Ti-6Al-4V particulates were packed in the machined grooves at first and subsequently processed by means of a traditional machine used for vertical milling. The processing speed and the repeated passes were considered as the major processing factors to vary during processing apart from the content of Ti-6Al-4V particles. Optical and scanning electron microscopes were used to record the evolved microstructure of the composites. Changes in Ti-6Al-4V particle distribution across the stir zone resulted to form several kinds of microscopic regions. The distribution of particles became inhomogeneous as the traverse speed was advanced to higher level. Conversely, the distribution became homogeneous with every pass. The role of selected process variables on the tensile behavior was analyzed. Mg MMCs that were prepared at lower traverse speed (30 mm/min) and higher number of passes (5) showed higher properties during tensile test. The micrographs of the fracture surfaces were studied to understand the mode of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39, p 6153–6171.

    Article  CAS  Google Scholar 

  2. A. Dey and K.M. Pandey, Magnesium Metal Matrix Composites—A Review, Rev. Adv. Mater. Sci., 2015, 42, p 58–67.

    CAS  Google Scholar 

  3. M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposites: Lightweight Materials of the Future, Mater. Charact., 2015, 105, p 30–46.

    Article  CAS  Google Scholar 

  4. A. Dey and K.M. Pandey, Wear Behaviour of Mg Alloys and Their Composites—A Review, Int. J. Mater. Res., 2018, 109, p 1050–1070.

    CAS  Google Scholar 

  5. M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, A.E.W. Jarfors, M. Wessen, R. Arrabal and L.G. Johansson, On the Microstructure and Corrosion Behavior of AZ91/SiC Composites Produced by Rheocasting, Mater. Chem. Phys., 2016, 180, p 29–37.

    Article  CAS  Google Scholar 

  6. A. Viswanath, H. Diering, K.K. Ajith Kumar, U.T.S. Pillai and B.C. Pai, Investigation on Mechanical Properties and Creep Behavior of Stir Cast AZ91-SiCp Composites, J. Magnes. Alloys, 2015, 3, p 16–22.

    Article  CAS  Google Scholar 

  7. S. Sankaranarayanan and M. Gupta, Review on Mechanical Properties of Magnesium (Nano) Composites Developed Using Energy Efficient Microwaves, Powder Metall., 2015, 58, p 183–192.

    Article  CAS  Google Scholar 

  8. M. Paramsothya, Q.B. Nguyen, K.S. Tun, J. Chan, R. Kwok, J.V.M. Kuma and M. Gupta, The Ability of Cast Composite Technology to Enhance Ductility of Wrought Magnesium and Alloys, Int. J. Mater. Res., 2011, 102, p 76–81.

    Article  Google Scholar 

  9. A. Squillace, U. Prisco, S. Ciliberto and A. Astarita, Effect of Welding Parameters on Morphology and Mechanical Properties of Ti–6Al–4V Laser Beam Welded Butt Joints, J. Mater. Process. Technol., 2012, 212, p 427–436.

    Article  CAS  Google Scholar 

  10. G.D. Wen, T.J. Ma, W.Y. Li, J.L. Li, H.Z. Guo and D.L. Chen, Cyclic Deformation Behavior of Linear Friction Welded Ti6Al4V Joints, Mater. Sci. Eng., A, 2014, 597, p 408–414.

    Article  CAS  Google Scholar 

  11. Y.L. Xi, D.L. Chai, W.X. Zhang and J.E. Zhou, Ti–6Al–4V Particle Reinforced Magnesium Matrix Composite by Powder Metallurgy, Mater. Lett., 2005, 59, p 1831–1835.

    Article  CAS  Google Scholar 

  12. H.Z. Ye and X.Y. Liu, Microstructure and Tensile Properties of Ti6Al4V/AM60B Magnesium Matrix Composite, J. Alloys Compd., 2005, 402, p 162–169.

    Article  CAS  Google Scholar 

  13. Y.L. Xi, D.L. Chai, W.X. Zhang and J.E. Zhou, Titanium Alloy Reinforced Magnesium Matrix Composite with Improved Mechanical Properties, Scr. Mater., 2006, 54, p 19–23.

    Article  CAS  Google Scholar 

  14. L.C. Kumruoglu, Production of Mg–3Al Based Composites Reinforced with Ti6Al4V Particles, Acta Phys. Pol., A, 2014, 125, p 432–434.

    Article  Google Scholar 

  15. X.M. Wang, X.J. Wang, X.S. Hu, K. Wu and M.Y. Zheng, Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced mg Matrix Composites, Acta Metall. Sin., 2016, 29, p 940–950.

    Article  CAS  Google Scholar 

  16. C.L. Zhang, X.J. Wang, X.M. Wang, X.S. Hu and K. Wu, Fabrication, Microstructure and Mechanical Properties of Mg Matrix Composites Reinforced by High Volume Fraction of Sphere TC4 Particles, J. Magnes. Alloys, 2016, 4, p 286–294.

    Article  CAS  Google Scholar 

  17. V. Sharma, U. Prakash and B.V. Manoj Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134.

    Article  CAS  Google Scholar 

  18. B. Ratna Sunil, G. Pradeep Kumar Reddy, H. Patle and R. Dumpala, Magnesium Based Surface Metal Matrix Composites by Friction Stir Processing, J. Magnes. Alloys, 2016, 4, p 52–61.

    Article  Google Scholar 

  19. S. Rathee, S. Maheshwari, A.N. Siddiquee and M. Srivastava, A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems via Friction Stir Processing, Crit. Rev. Solid State Mater. Sci., 2018, 43, p 334–366.

    Article  CAS  Google Scholar 

  20. M. Deepan, C. Pandey, N. Saini, M.M. Mahapatra and R.S. Mulik, Estimation of Strength and Wear Properties of Mg/SiC Nanocomposite Fabricated Through FSP Route, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, p 4613–4622.

    Article  CAS  Google Scholar 

  21. D. Ahmadkhaniha, M. Heydarzadeh-Sohi, A. Salehi and R. Tahavvori, Formations of AZ91/Al2O3 Nano-Composite Layer by Friction Stir Processing, J. Magnes. Alloys, 2016, 4, p 314–318.

    Article  CAS  Google Scholar 

  22. M. Balakrishnan, I. Dinaharan, R. Palanivel and R. Sivaprakasam, Synthesize of AZ31/TiC Magnesium Matrix Composites Using Friction Stir Processing, J. Magnes. Alloys, 2015, 3, p 76–78.

    Article  CAS  Google Scholar 

  23. C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee and J.C. Huang, On the Hardening of Friction Stir Processed Mg-AZ31 Based Composites with 5–20% Nano-ZrO2 and Nano-SiO2 Particles, Mater. Trans., 2006, 47, p 2942–2949.

    Article  CAS  Google Scholar 

  24. M. Navazani and K. Dehghani, Fabrication of Mg-ZrO2 Surface Layer Composites by Friction Stir Processing, J. Mater. Process. Technol., 2016, 229, p 439–449.

    Article  CAS  Google Scholar 

  25. N. Bhadouria, P. Kumar, L. Thakur, S. Dixit and N. Arora, A Study on Micro-Hardness and Tribological Behaviour of Nano-WC–Co–Cr/Multi-Walled Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Surface Composites, Trans. Indian Inst. Met., 2017, 70, p 2477–2483.

    Article  CAS  Google Scholar 

  26. A. Adetunla and E. Akinlabi, Mechanical Characterization of Al/Ti-6Al-4V Surface Composite Fabricated via FSP: A Comparison of Tool Geometry and Number of Passes, Mater. Res. Express, 2018, 5, p 115015.

    Article  Google Scholar 

  27. G. Chen, H. Li, G. Wang, Z. Guo, S. Zhang, Q. Dai, X. Wang, G. Zhang and Q. Shi, Effects of Pin Thread on the In-process Material Flow Behavior During Friction Stir Welding: A Computational Fluid Dynamics Study, Int. J. Mach. Tools Manuf, 2018, 124, p 12–21.

    Article  Google Scholar 

  28. P. Asadi, G. Faraji, A. Masoumi and M.K. Besharati Givi, Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types And Number of Friction Stir Processing Passes, Metall. Mater. Trans. A, 2011, 42, p 2820–2832.

    Article  CAS  Google Scholar 

  29. M. Azizieh, A.H. Kokabi and P. Abachi, Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing, Mater. Des., 2011, 32, p 2034–2041.

    Article  CAS  Google Scholar 

  30. D. Liu, M. Shen, Y. Tang, Y. Hu and L. Zhao, Efect of Multipass Friction Stir Processing on Surface Corrosion Resistance and Wear Resistance of ZK60 Alloy, Met. Mater. Int., 2019, 25, p 1182–1190.

    Article  CAS  Google Scholar 

  31. M. Sharifitabar, M. Kashefi and S. Khorshahian, Effect of Friction Stir Processing Pass Sequence on Properties of Mg–ZrSiO4–Al2O3 Surface Hybrid Micro/Nano-Composites, Mater. Des., 2016, 108, p 1–7.

    Article  CAS  Google Scholar 

  32. W. Xunhong and W. Kuaishe, Microstructure and Properties of Friction Stir Butt-Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2006, 431, p 114–117.

    Article  Google Scholar 

  33. A. Matin, F.F. Saniee and H.R. Abedi, Microstructure and Mechanical Properties of Mg/SiC and AZ80/SiC Nano-Composites Fabricated Through Stir Casting Method, Mater. Sci. Eng. A, 2015, 625, p 81–88.

    Article  CAS  Google Scholar 

  34. A. Alavi Nia and S.H. Nourbakhsh, Microstructure and Mechanical Properties of AZ31/SiC and AZ31/CNT Composites Produced by Friction Stir Processing, Trans. Indian Inst. Met., 2016, 69, p 1435–1442.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank ZKKF (Beijing) Science and Technology Co., Ltd for TEM observation and Sprint Testing Solutions, Mumbai for EBSD observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinaharan, I., Zhang, S., Chen, G. et al. Parametric Influence of Friction Stir Processing on Microstructural Evolution and Tensile Behavior of AZ31/Ti-6Al-4V Magnesium Matrix Composites. J. of Materi Eng and Perform 30, 2899–2915 (2021). https://doi.org/10.1007/s11665-021-05467-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05467-z

Keywords

Navigation