Skip to main content
Log in

Evaluation of sodium dodecyl sulfate effect on electrocatalytic properties of poly(1-naphtylamine)/nickel-modified carbon paste electrode as an efficient electrode toward electrooxidation of methanol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, 1-naphtylamine is electropolymerized at the surface of carbon paste electrode (CPE) using consecutive cyclic voltammetry in 15 mM monomer aqueous solution in the presence of 15 mM sodium dodecyl sulfate (SDS) as surfactant. Then, transition metal of nickel is incorporated into the polymeric electrode placing in 1.2 M NiCl2 solution without applying any potential to the electrode for 7 min. In alkaline medium (i.e., NaOH 0.1 M), a good redox behavior of Ni(III)/Ni(II) couple at the surface of Ni/poly (1-naphtylamine) modified carbon paste electrode (Ni/PNAM/MCPE) in the absence and presence of SDS (Ni/SDS-PNA/MCPE) can be observed. Electrocatalytic oxidation of methanol has been studied on Ni/PNA/MCPE and Ni/SDS-PNAM/MCPE. The results show that SDS significantly enhances the catalytic efficiency of nickel particles on the oxidation of methanol in aqueous alkaline media. Moreover, the effects of various parameters such as concentration of SDS, concentration of methanol, film thickness, and monomer concentration on the electrooxidation of methanol as well as long-term stability of the Ni/SDS-PNAM/MCPE have also been investigated. This polymeric modified electrode can oxidize the methanol with high current density (over 3 mA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ojani R, Raoof JB, Zavvarmahalleh SRH (2008) Electrochim Acta 53:2402–2407

    Article  CAS  Google Scholar 

  2. Jiang C, Chen H, Yu C, Zhang S, Liu B, Kong J (2009) Electrochim Acta 54:1134–1140

    Article  CAS  Google Scholar 

  3. Zainoodin AM, Kamarudin SK, Daud WRW (2010) Int J Hydrog Energy 35:4606–4621

    Article  CAS  Google Scholar 

  4. Wang S, Jiang SP, Wang X, Guo J (2011) Electrochim Acta 56:1563–1569

    Article  CAS  Google Scholar 

  5. Zhang R, Zhang W, Gao L, Zhang J, Li P, Wang W, Li R (2013) Appl Catal A Gen 466:264–271

    Article  CAS  Google Scholar 

  6. Pan C, Qiu L, Peng Y, Yan F (2012) J Mater Chem 22:13578–13584

    Article  CAS  Google Scholar 

  7. Leclerc M, Guay J, Dao LH (1989) Macromolecules 22:649–653

    Article  CAS  Google Scholar 

  8. Yan Z, He G, Zhang G, Meng H, Shen PK (2010) Int J Hydrog Energy 35:3263–3269

    Article  CAS  Google Scholar 

  9. Martínez S, Martins ME, Zinola CF (2010) J Hydrog Energy 35:5343–5355

    Article  Google Scholar 

  10. Lamy C, Belgsir EM, Leger JM (2001) J Appl Electrochem 31:799–809

    Article  CAS  Google Scholar 

  11. El-Deab MS (2009) Int J Electrochem Sci 4:1329–1338

    CAS  Google Scholar 

  12. Habibi B, Pournaghi-Azar MH, Razmi H, Abdolmohammad-Zadeh H (2008) Int J Hydrog Energy 33:2668–2678

    Article  CAS  Google Scholar 

  13. Wang J (2006) Analytical electrochemistry. Wiley, New York

    Book  Google Scholar 

  14. Fathi S, Mahdavi MR (2014) Russ J Electrochem 50:1077–1084

    Article  CAS  Google Scholar 

  15. Ojani R, Raoof JB, Babazadeh R (2010a) Electroanalysis 22:1607–1616

    CAS  Google Scholar 

  16. Entezami AA, Golabie SM, Raoof JB (1992) Iran J Polym Sci Technol 1:7

    CAS  Google Scholar 

  17. Ojani R, Raoof JB, Salmany-Afagh P (2004) J Electroanal Chem 571:1–8

    Article  CAS  Google Scholar 

  18. Ojani R, Raoof JB, Zamani S (2010b) Talanta 81:1522–1528

    Article  CAS  Google Scholar 

  19. Ojani R, Raoof JB, Fathi S (2009) Electrochim Acta 54:2190–2196

    Article  CAS  Google Scholar 

  20. Barr GE, Sayre CN, Connor DM, Collard DM (1996) Langmuir 12:1395–1398

    Article  CAS  Google Scholar 

  21. Bazzaoui EA, Aeiyach S, Lacaze PC (1996) Synth Met 83:159–165

    Article  CAS  Google Scholar 

  22. D’Eramo F, Marioli JM, Arévalo AA, Sereno LE (1999) Electroanalysis 11:481–486

    Article  Google Scholar 

  23. Casella IG, Cataldi TR, Guerrieri A, Desimoni E (1996) Anal Chim Acta 335:217–225

    Article  CAS  Google Scholar 

  24. Jafarian M, Mahjani MG, Heli H, Gobal F, Heydarpoor M (2003) Electrochem Commun 5:184–188

    Article  CAS  Google Scholar 

  25. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, De Guibert A (1982) J Power Sources 8:229–255

    Article  CAS  Google Scholar 

  26. Robertson PM (1980) J Electroanal Chem Interfacial Electrochem 111:97–104

    Article  CAS  Google Scholar 

  27. Raoof JB, Jahanshahi M, Ahangar SM (2010) Int J Electrochem Sci 5:517–530

    CAS  Google Scholar 

  28. Qiu C, Shang R, Xie Y, Bu Y, Li C, Ma H (2010) Mater Chem Phys 120:323–330

    Article  CAS  Google Scholar 

  29. Zheng L, Zhang JQ, Song JF (2009) Electrochim Acta 54:4559–4565

    Article  CAS  Google Scholar 

  30. Ojani R, Raoof JB, Ahmady-Khanghah Y (2011) Electrochim Acta 56:3380–3386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ojani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojani, R., Tirgari, E. & Raoof, JB. Evaluation of sodium dodecyl sulfate effect on electrocatalytic properties of poly(1-naphtylamine)/nickel-modified carbon paste electrode as an efficient electrode toward electrooxidation of methanol. J Solid State Electrochem 20, 2305–2313 (2016). https://doi.org/10.1007/s10008-016-3250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3250-3

Keywords

Navigation