Skip to main content

Advertisement

Log in

Preparation and Properties of High-Temperature Self-Lubricating Materials Based on H13 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-temperature self-lubricating materials based on H13 steel are prepared by the powder metallurgy method. The sintering process, phase addition and high-temperature testing of the material are studied so that the mechanical and wear performance of the composites can be optimized. The results show that the optimum sintering process is 2 h at a temperature of 1250 °C. When the contents of Cr2C3 and CaF2 are 10%, the mechanical and sintering properties of the composites are acceptable. The relative density reaches 80.2% and the bending strength reaches 720.2 MPa. Moreover, CaF2 effectively reduces the friction coefficient and wear rate of the material. The friction coefficient decreases to a minimum of 0.24, but the wear rate increases to a maximum of 7.26 × 10−5 mm2/min at a load of 1065 g. Cr2C3 helps to alleviate the oxidation of the composites, and the precipitation of CaF2 causes network cracks to reduce the thermal fatigue performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. O. Barrau, C. Boher, R. Gras et al., Analysis of the Friction and Wear Behaviour of Hot Work Tool Steel for Forging, Wear, 2003, 255, p 1444–1454

    Article  CAS  Google Scholar 

  2. D.J. Jeong, D.J. Kim, J.H. Kim, B.M. Kim, and T.A. Dean, Effects of Surface Treatments and Lubricants for Warm Forging Die Life, J. Mater. Process. Technol., 2001, 113, p 544–550

    Article  CAS  Google Scholar 

  3. D. Martinez Krahmer, A.J. Sanchez Egea, D. Celentano, V. Martynenko, and M. Cruchagae, Friction Characterization When Combining Laser Surface Texting and Graphite-Based Lubricants, J. Mater. Res. Technol., 2019, 12, p 1–9

    Google Scholar 

  4. L. Yang and R. Shivpuri, Spreading Behavior of Water Based Graphite Lubricants on Hot Die Surfaces, CIRP Ann. Manuf. Technol., 2006, 55, p 299–302

    Article  Google Scholar 

  5. Q.J. Xue and J.J. Lu, Reasearch Status and Developing Trend of Solid Lubrication at High Temperatures, Tribology, 1999, 1, p 92–97

    Google Scholar 

  6. H.E. Sliney, Solid Lubricant Materials for High Temperatures—A Review, Tribol. Int., 1982, 15, p 303–315

    Article  CAS  Google Scholar 

  7. R.Y. Zhu, P.L. Zhang, and Z.S. Yu, Microstructure and Wide Temperature Range Self-Lubricating Properties of Laser Cladding NiCrAlY/Ag2O/Ta2O5 Composite Coating, Surf. Coat. Technol., 2020, 383, p 54–61

    Article  Google Scholar 

  8. S.L. Cao, J.S. Zhou, L.Q. Wang, Y.J. Yu, and B.B. Xin, Microstructure, Mechanical and Tribological Property of Mult-Components Synergistic Self-Lubricating NiCoCrAl Matrix Composite, Tribol. Int., 2019, 131, p 508–519

    Article  CAS  Google Scholar 

  9. H. Torres, S. Slawikc, C. Gachotd, B. Prakasha, and M. Rodriguez Ripoll, Microstructural Design of Self-Lubricating Laser Claddings for Use in High Temperature Sliding Applications, Surf. Coat. Technol., 2018, 337, p 24–34

    Article  CAS  Google Scholar 

  10. C.H. Ding, P.L. Li, G. Ran et al., PM304 Coating on a Ni-Based Superalloy Rod for High Temperature Lubrication, Ceram. Int., 2008, 34, p 279–284

    Article  CAS  Google Scholar 

  11. C. Dellacorte, B.J. Edmonds, Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 °C,NASA T.M., 107056 (1995)

  12. C. DellaCorte, H.E. Sliney, Tribological Properties of PM212: A High Temperature, Self-Lubricating, Powder Metallurgy Composite, NASA T.M., 102355 (1990)

  13. J.X. Deng, T.K. Cao, X.F. Yang, and J.H. Liu, Self-Lubrication of Sintered Ceramic Tools with CaF2 Additions in Dry Cutting, Int. J. Mach. Tools Manuf, 2006, 46, p 957–963

    Article  Google Scholar 

  14. B. Bernd-Arno and Jonathan, Production, Bonding and Application of Metal Matrix Composite Hot Forging Tool Components, Procedia Manuf., 2020, 47(01), p 329–334

    Google Scholar 

  15. J. Marashi, E. Yakushina, P. Xirouchakis, R. Zante, and J. Foster, An Evaluation of H13 Tool Steel Deformation in Hot Forging Conditions, J. Mater. Process. Technol., 2017, 246, p 276–284

    Article  CAS  Google Scholar 

  16. C. Dellacorte, The Effect of Counterface on the Tribological Performance of a High Temperature Solid Lubricant Composite from 25 to 650 °C, Surf. Coat. Technol., 1996, 86–87, p 486–492

    Article  Google Scholar 

  17. C.H. Ding, P.L. Li, and G. Ran, Tribological Property of Self-Lubricating PM304 Composite, Wear, 2007, 262, p 575–581

    Article  CAS  Google Scholar 

  18. S. Sahoo, S. Samal, and B. Bhoi, Fabrication and Characterization of Novel Al-SiC-hBN Self-Lubricating Hybrid Composites, Mater. Today Commun., 2020, 25, p 101402

    Article  CAS  Google Scholar 

  19. A. Senouci, J. Frene, and H. Zaidi, Wear Mechanism in Graphite-Copper Electrical Sliding Contact, Wear, 1999, 225–229, p 949–953

    Article  Google Scholar 

  20. S. Sahoo, A. Kumar, and B.K. Dhindaw, High Speed Twin Roll Casting of Aluminum-Copper Strips with Layered Structure, Mater. Manuf. Processes, 2012, 28, p 61–65

    Article  CAS  Google Scholar 

  21. M.T. Hayajneh, A.M. Hassan, and A.T. Mayyas, Artificial Neural Network Modeling of the Drilling Process of Self-Lubricated Aluminum/Alumina/Graphite Hybrid Composites Synthesized by Powder Metallurgy Technique, J. Alloys Compd., 2009, 478, p 559–565

    Article  CAS  Google Scholar 

  22. N. Kumar, A. Bharti, K.K. Saxena, A Re-analysis of Effect of Various Process Parameters on the Mechanical Properties of Mg Based MMCs Fabricated by Powder Metallurgy Technique. Mater. Today Proc. (2020)

  23. M. Moazamigoudarzi and A. Nemati, Tribological Behavior of Self-Lubricating Cu/MoS2 Composites Fabricated by Powder Metallurgy, Trans. Nonferrous Metals Soc. China, 2018, 28, p 946–956

    Article  CAS  Google Scholar 

  24. G. Hammes, K.J. Mucelin, and P. da Costa Gonçalves, Effect of Hexagonal Boron Nitride and Graphite on Mechanical and Scuffing Resistance of Self-Lubricating Iron Based Composite, Wear, 2017, 376–377, p 1084–1090

    Article  Google Scholar 

  25. M. Niu, Q. Bi, and J. Yang, Tribological Performance of a Ni3Al Matrix Self-Lubricating Composite Coating Tested from 25 to 1000 °C, Surf. Coat. Technol., 2012, 206, p 3938–3943

    Article  CAS  Google Scholar 

  26. L.L. Han, K. Li, and C. Qian, Wear Behavior of Light-Weight and High Strength Fe-Mn-Ni-Al Matrix Self-Lubricating Steels, J. Mater. Sci. Technol., 2019, 35, p 161–168

    Google Scholar 

  27. S. Chander and V. Chawla, Failure of Hot Forging Dies –An Updated Perspective, Mater. Today: Proc., 2017, 4, p 1147–1157

    Google Scholar 

  28. S. Yoon, S. Kang, Y. Choi, H. Choi, and S.-J. Lee, Effect of Relative Density on Microstructure and Mechanical Properties of Fe-12Mn-02C Alloy Fabricated by Powder Metallurgy, Powder Technol., 2016, 298, p 106–111

    Article  CAS  Google Scholar 

  29. S. Chauhan, V. Verma, and U. Prakash, Analysis of Powder Metallurgy Process Parameters for Mechanical Properties of Sintered Fe-Cr-Mo Alloy Steel, Mater. Manuf. Process., 2016, 32, p 537–541

    Article  Google Scholar 

  30. G. Margaux, C. Jerome, M.J. Dougan, and H. Eric, Evolution of Damage and Fracture in Two Families of Ni-Cu-Mo Sinter-Hardened Steels with Various Initial Porosities, Mater. Sci. Eng., A, 2016, 654, p 85–93

    Article  Google Scholar 

  31. D.T. Gethin, A.K. Arimn, and D.V. Tran, Compaction and Ejection of Green Powder Compacts, Powder Metall., 2014, 37, p 42

    Article  Google Scholar 

  32. Z.Y. Zhang and R. Sandstrem, Fe-Mn-Si Master Alloy Steel by Powder Metallurgy Processing, J. Alloy. Compd., 2004, 363, p 194–202

    Article  CAS  Google Scholar 

  33. A. Arman, S. Farshid, and S. Steve, In-situ Friction and Fretting Wear Measurements of Inconel 617 at Elevated Temperatures, Wear, 2008, 410–411, p 110–118

    Google Scholar 

  34. R.C. Bill, Fretting Wear and Fretting Fatigue—How Are They Related (1981)

  35. H.D. Ding, S.L. Fu, Y.L. Zhu, Y.L. Wang, and Z.H. Jin, Wear Investigation of Self-Lubrication Material Slid Friction, Chin. J. Nonferrous Metals, 2001, 11, p 616

    CAS  Google Scholar 

  36. S.S. Yan, X.L. Li, and Z.M. Liu, Composition Design and Properties of High Temperature Sweating Compound Lubricant for Infiltration, J. WUT Inf. Manag. Eng., 2013, 35, p 863–866

    Google Scholar 

  37. T.W. Scharf and S.V. Prasad, Solid Lubricants: a Review, J. Mater. Sci., 2013, 48, p 511–531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out with financial support from Natural Science Foundation of China (51801140). This work was financially supported by Wuhan University of Technology Graduate Outstanding Thesis Cultivation Project (2017-YS-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wang, H., Li, M. et al. Preparation and Properties of High-Temperature Self-Lubricating Materials Based on H13 Steel. J. of Materi Eng and Perform 29, 7830–7842 (2020). https://doi.org/10.1007/s11665-020-05284-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05284-w

Keywords

Navigation