Skip to main content

Advertisement

Log in

Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of the deformation temperature and strain rate on the dynamic mechanical behavior of an extruded Mg-8Gd-4Y-Nd-Zr alloy plate is investigated using optical microscopy, scanning electron microscopy, x-ray diffraction and the split Hopkinson pressure bar methods. The alloy exhibits excellent dynamic compressive strength both at room temperature and high temperatures. The compressive strength of the alloy can reach 569 MPa, 635 MPa and 567 MPa at the deformation conditions of room temperature/2317 s−1, 200°C/1659 s−1, and 300°C/1581 s−1, respectively. The excellent mechanical properties of the alloy at different temperatures are mainly due to the stable rare earth-rich particles and the dynamic precipitates formed at the grain boundaries during compression. Cleavage planes and dimples are the main features of the fracture surface. The number of dimples increases as the deformation temperature increases, while the proportion of cleavage planes decreases with increasing temperature. However, the fracture characteristics are distinct in different regions. A large number of cleavage surfaces can also be observed in certain areas, where the cleavage cracks are easy to propagate, even if the sample is compressed at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.G. Qi, D.F. Zhang, X.H. Zhang, and X.X. Xu, Effect of Sn Addition on the Microstructure and Mechanical Properties of Mg-6Zn-1Mn (wt.%) Alloy, J. Alloys Compd., 2014, 585, p 656–666

    Article  CAS  Google Scholar 

  2. F.S. Pan, M.B. Yang, and X.H. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol., 2016, 32, p 1211–1221

    Article  CAS  Google Scholar 

  3. H.M. Xie, B. Jiang, J.J. He, X.S. Xia, and F.S. Pan, Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts, Tribol. Int., 2016, 93, p 63–70

    Article  CAS  Google Scholar 

  4. J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent Developments in High-Strength Mg-RE-Based Alloys: Focusing on Mg-Gd and Mg-Y Systems, J. Magn. Alloy, 2018, 6, p 277–291

    Article  CAS  Google Scholar 

  5. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2018, 34, p 245–247

    Article  Google Scholar 

  6. J. Sun, L. Jin, J. Dong, F.H. Wang, S. Dong, W.J. Ding, and A.A. Luo, Towards High Ductility in Magnesium Alloys: The Role of Intergranular Deformation, Int. J. Plast, 2019, 123, p 121–132

    Article  CAS  Google Scholar 

  7. Y.C. Wan, C.M. Liu, H.C. Xiao, Y.H. Gao, S.N. Jiang, and Z.Y. Chen, Improving the Ductility of Mg-Gd-Y-Zr Alloy Through Extrusion and a Following Rolling, Adv. Eng. Mater., 2018, 20, p 1701041

    Article  Google Scholar 

  8. Q. Chen, J. Lin, H. Zhan, S.H. Huang, D.Y. Shu, and B.G. Yuan, Microstructure Evolution and Mechanical Properties of Large-Scale AZ80 Magnesium Alloy Billets Produced by Multitemperature Multidirectional Forging, J. Mater. Eng. Perf., 2019, 28, p 3498–3504

    Article  CAS  Google Scholar 

  9. T. Homma, N. Kunito, and S. Kamado, Fabrication of Extraordinary High-Strength Magnesium Alloy by Hot Extrusion, Scr. Mater., 2009, 61, p 644–647

    Article  CAS  Google Scholar 

  10. Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort, and J. Meng, Fabrication of a High Strength Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt.%) Alloy by Thermomechanical Treatments, Mater. Sci. Eng., A, 2015, 622, p 121–130

    Article  CAS  Google Scholar 

  11. C. Xu, T. Nakata, G.H. Fan, X.W. Li, G.Z. Tang, and S. Kamado, Enhancing Strength and Creep Resistance of Mg-Gd-Y-Zn-Zr Alloy by Substituting Mn for Zr, J. Magn. Alloy, 2019, 7, p 388–399

    Article  CAS  Google Scholar 

  12. G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, and J. Meng, Development of High Mechanical Properties and Moderate Thermal Conductivity Cast Mg Alloy with Multiple RE via Heat Treatment, J. Mater. Sci. Technol., 2018, 34, p 1076–1084

    Article  Google Scholar 

  13. Z.J. Yu, C. Xu, J. Meng, K. Liu, J.L. Fu, and S. Kamado, Effects of Extrusion Ratio and Temperature on the Mechanical Properties and Microstructure of As-Extruded Mg-Gd-Y-(Nd/Zn)-Zr Alloys, Mater. Sci. Eng., A, 2019, 762, p 138080

    Article  CAS  Google Scholar 

  14. S.L. Yu, C.M. Liu, Y.H. Gao, S.N. Jiang, and Y. Yao, Microstructure, Texture and Mechanical Properties of Mg-Gd-Y-Zr Alloy Annular Forging Processed by Hot Ring Rolling, Mater. Sci. Eng., A, 2018, 689, p 40–47

    Article  Google Scholar 

  15. D.X. Sun, X.M. Zhang, L.Y. Ye, X.H. Gui, H.C. Jiang, and G. Gu, Comparative Study of the Dynamic Mechanical Behavior of Aluminum Alloy 2519A and 7039, Mater. Sci. Eng., A, 2015, 640, p 165–170

    Article  CAS  Google Scholar 

  16. M. Vural and J. Caro, Experimental Analysis and Constitutive Modeling for the Newly Developed 2139-T8 Alloy, Mater. Sci. Eng., A, 2009, 520, p 56–65

    Article  Google Scholar 

  17. W.T. Wang, X.M. Zhang, Z.G. Gao, Y.Z. Jia, L.Y. Ye, D.W. Zheng, and L. Liu, Influences of Ce Addition on the Microstructures and Mechanical Properties of 2519A Aluminum Alloy Plate, J. Alloys Compd., 2010, 491, p 366–371

    Article  CAS  Google Scholar 

  18. J.C. Yu, Z. Liu, Y. Dong, and Z. Wang, Dynamic Compressive Property and Failure Behavior of Extruded Mg-Gd-Y Alloy Under High Temperatures and High Strain Rates, J. Magn. Alloy, 2015, 3, p 134–141

    Article  CAS  Google Scholar 

  19. P.L. Mao, J.C. Yu, Z. Liu, and Y. Dong, Microstructure Evolution of Extruded Mg-Gd-Y Magnesium Alloy Under Dynamic Compression, J. Magn. Alloy, 2013, 1, p 64–75

    Article  CAS  Google Scholar 

  20. C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, and Y.L. Deng, Effects of Thermal Treatment on Microstructure and Mechanical Properties of a Mg-Gd-Based Alloy Plate, Mater. Sci. Eng., A, 2016, 659, p 63–75

    Article  CAS  Google Scholar 

  21. X.M. Zhang, C.P. Tang, Y.L. Deng, and L. Yang, Effects of Thermal Treatment on Precipitate Shape and Mechanical Properties of Mg-8Gd-4Y-Nd-Zr Alloy, Mater. Des., 2011, 32, p 4994–4998

    Article  CAS  Google Scholar 

  22. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-0.5Zr Alloy, J. Alloys Compd., 2007, 427, p 316–323

    Article  CAS  Google Scholar 

  23. H.R.J. Nodooshan, W.C. Liu, G.H. Wu, Y. Rao, C.X. Zhou, S.P. He, W.J. Ding, and R. Mahmudi, Effect of Gd Content on Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloys Under Peak-Aged Condition, Mater. Sci. Eng., A, 2014, 615, p 79–86

    Article  CAS  Google Scholar 

  24. J. Wang, J. Meng, D.P. Zhang, and D.X. Tang, Effect of Y for Enhanced Age Hardening Response and Mechanical Properties of Mg-Gd-Y-Zr Alloys, Mater. Sci. Eng., A, 2007, 456, p 78–84

    Article  Google Scholar 

  25. B. Song and W. Chen, Split Hopkinson Bar Techniques for Characterizing Soft Materials, Latin Am. J. Solids Struct., 2005, 2, p 113–152

    Google Scholar 

  26. S.M. Zhu, J.F. Nie, M.A. Gibson, and M.A. Easton, On the Unexpected Formation of Rare Earth Hydrides in Magnesium-Rare Earth Casting Alloys, Scr. Mater., 2014, 77, p 21–24

    Article  CAS  Google Scholar 

  27. R. Kapoor and S. Nemat-Nasser, Determination of Temperature Rise During High Strain Rate Deformation, Mech. Mater., 1998, 27, p 1–12

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial supports from National Natural Science Foundation of China (Grant Nos. 52075167, 51605159, 52071139 and 51601062), Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4307 and 2016JJ5042), and Excellent Youth Project of Hunan Provincial Department of Education (Grant No. 19B214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changping Tang or Wenhui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Wang, X., Liu, W. et al. Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy. J. of Materi Eng and Perform 29, 8414–8421 (2020). https://doi.org/10.1007/s11665-020-05274-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05274-y

Keywords

Navigation