Skip to main content
Log in

Influence of Heat Input on Microstructure and Corrosion Resistance of Underwater Wet-Welded E40 Steel Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Heat input has a significant effect on the microstructure and corrosion performance for welded joints. Underwater wet welding (UWW) was applied to high-strength low-alloy steels E40 with different heat inputs. Corrosion performance of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) was investigated by the electrochemical techniques including electrochemical impedance spectroscopy and potentiodynamic polarization tests emerged in 3.5 wt.% NaCl solution. The results indicated that corrosion resistance of WM decreases with increasing heat input when the welding speed remains constant. Compared with arc voltage and welding current used in UWW, welding speed plays a more important role in the corrosion behavior of WM. The excessive welding speed can cause severe deterioration of corrosion resistance of WM. Meanwhile, the WM indicates the better corrosion resistance than the HAZ and the BM for the sample 2 with a heat input of 2.5 kJ/mm, and the worst corrosion resistance appears in the BM. The critical role of microstructure, grain size, grain boundary and crystal orientation in the corrosion resistance was discussed by optical microscope and electron backscatter diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.D. Rowe and S. Liu, Recent Developments in Underwater Wet Welding, Sci. Technol. Weld. Join., 2001, 6(6), p 387–396

    Article  CAS  Google Scholar 

  2. F. Perez and S. Liu, Maintenance and Repair Welding in the Open Sea, Weld. J., 2005, 84(11), p 54–59

    Google Scholar 

  3. S.Y. Maksimov, Underwater Arc Welding of Higher Strength Low-Alloy Steels, Weld Int., 2010, 24(6), p 449–454

    Article  Google Scholar 

  4. J. Łabanowski, D. Fydrych, and G. Rogalski, Underwater Welding: A Review—Advances in Materials Sciences, Advances in Materials Science., 2008, 8(3), p 11–22

    Article  Google Scholar 

  5. J. Zhu, L. Xu, Z. Feng, G. Frankel, M. Lu, and W. Chang, Galvanic Corrosion of a Welded Joint in 3Cr LOW Alloy Pipeline Steel, Corros. Sci., 2016, 111, p 391–403

    Article  CAS  Google Scholar 

  6. H. Li, D. Liu, Y. Yan, N. Guo, Y. Liu, and J. Feng, Effects of Heat Input on Arc Stability and Weld Quality in Underwater Wet Flux-Cored Arc Welding of E40 Steel, J. Manuf. Process., 2018, 31, p 833–843

    Article  Google Scholar 

  7. W. Huang, H. Yen, and Y. Lee, Corrosion Behavior and Surface Analysis of 690 MPa-Grade Offshore Steels in Chloride Media, J. Mater. Res. Technol., 2019, 8(1), p 1476–1485

    Article  CAS  Google Scholar 

  8. Q. Bai, Y. Zou, X. Kong, Y. Gao, Y. Liu, and S. Dong, Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater Wet Welding with Austenitic Welding Rod, J. Chin. Soc. Corros. Prot., 2016, 36(5), p 427–432

    Google Scholar 

  9. X. Kong, J. Zhang, Y. Jiang, D. Chu, C. Li, N. Gao, and Y. Zou, Corrosion Performance of Underwater Welded Joints of E40 Steel in Coastal Water of QINGDAO via Mass-Loss Method, J. Chin. Soc. Corros. Prot., 2018, 38(3), p 226–232

    Google Scholar 

  10. B. Jegdić, B. Bobić, B. Radojković, B. Alić, and L. Radovanović, Corrosion Resistance of Welded Joints of X5CrNi18-10 Stainless Steel, J. Mater. Process. Technol., 2019, 266, p 579–587

    Article  Google Scholar 

  11. A. Shankar, G. Gopalakrishnan, V. Balusamy, and U. Mudali, Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium, J. Mater. Eng. Perform., 2009, 18(8), p 1116

    Article  Google Scholar 

  12. P. Saha, S. Datta, M. Raza, and D. Pratihar, Effects of Heat Input on Weld-Bead Geometry, Surface Chemical Composition, Corrosion Behavior and Thermal Properties of Fiber Laser-Welded Nitinol Shape Memory Alloy, J. Mater. Eng. Perform., 2019, 28(5), p 2754–2763

    Article  CAS  Google Scholar 

  13. K. Sun, M. Zeng, Y. Shi, Y. Hu, and X. Shen, Microstructure and Corrosion Behavior of S32101 Stainless Steel Underwater Dry and Wet Welded Joints, J. Mater. Process. Technol., 2018, 256, p 190–201

    Article  CAS  Google Scholar 

  14. M. Yousefieh, M. Shamanian, and A. Saatchi, Influence of Heat Input in Pulsed Current GTAW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds, J. Iron. Steel Res. Int., 2011, 18(9), p 65–69

    Article  CAS  Google Scholar 

  15. S. Babu and S. Natarajan, Influence of Heat Input on High Temperature Weldment Corrosion in Submerged Arc Welded Power Plant Carbon Steel, Mater. Des., 2008, 29(5), p 1036–1042

    Article  CAS  Google Scholar 

  16. Y. Lu, H. Jing, Y. Han, and L. Xu, Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal, J. Mater. Eng. Perform., 2016, 25(2), p 565–576

    Article  CAS  Google Scholar 

  17. Y. Guo, C. Li, Y. Liu, L. Yu, Z. Ma, C. Liu, and H. Li, Effect of Microstructure Variation on the Corrosion Behavior of High-Strength Low-Alloy Steel in 3.5 wt% NaCl Solution, Int. J. Miner. Metall. Mater., 2015, 22(6), p 604–612

    Article  CAS  Google Scholar 

  18. L. Aucott, D. Huang, H. Dong, S. Wen, J. Marsden, A. Rack, and A. Cocks, Initiation and Growth Kinetics of Solidification Cracking During Welding of Steel, Sci. Rep., 2017, 7, p 40255

    Article  CAS  Google Scholar 

  19. W. Gao, D. Wang, F. Cheng, X. Di, C. Deng, and W. Xu, Microstructural and Mechanical Performance of Underwater Wet Welded S355 Steel, J. Mater. Process. Technol., 2016, 238, p 333–340

    Article  CAS  Google Scholar 

  20. B. Huang, J. Yang, D. Lu, and W. Bin, Study on the Microstructure, Mechanical Properties and Corrosion Behaviour of S355JR/316L Dissimilar Welded Joint Prepared by Gas Tungsten Arc Welding Multi-pass Welding Process, Sci. Technol. Weld. Join., 2016, 21(5), p 381–388

    Article  CAS  Google Scholar 

  21. K. Deen, R. Ahmad, I. Khan, and Z. Farahat, Microstructural Study and Electrochemical Behavior of Low Alloy Steel Weldment, Mater. Des., 2010, 31(6), p 3051–3055

    Article  CAS  Google Scholar 

  22. N. Ouali, K. Khenfer, B. Belkessa, J. Fajoui, B. Cheniti, B. Idir, and S. Branchu, Effect of Heat Input on Microstructure, Residual Stress, and Corrosion Resistance of UNS 32101 Lean Duplex Stainless Steel Weld Joints, J. Mater. Eng. Perform., 2019, 28(7), p 4252–4264

    Article  CAS  Google Scholar 

  23. P. Bommersbach, C. Alemany-Dumont, J. Millet, and B. Normand, Formation and Behaviour Study of an Environment-Friendly Corrosion Inhibitor by Electrochemical Methods, Electrochim. Acta, 2005, 51(6), p 1076–1084

    Article  CAS  Google Scholar 

  24. P. Niu, W. Li, N. Li, Y. Xu, and D. Chen, Exfoliation Corrosion of Friction Stir Welded Dissimilar 2024-to-7075 Aluminum Alloys, Mater. Charact., 2019, 147, p 93–100

    Article  CAS  Google Scholar 

  25. Y. Qiu, S. Thomas, M. Gibson, H. Fraser, K. Pohl, and N. Birbilis, Microstructure and Corrosion Properties of the Low-Density Single-Phase Compositionally Complex Alloy AlTiVCr, Corros. Sci., 2018, 133, p 386–396

    Article  CAS  Google Scholar 

  26. H. Huang, W. Tsai, and J. Lee, The Influences of Microstructure and Composition on the Electrochemical Behavior of A516 Steel Weldment, Corros. Sci., 1994, 36(6), p 1027–1038

    Article  CAS  Google Scholar 

  27. K. Ralston, N. Birbilis, and C. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204

    Article  CAS  Google Scholar 

  28. J. Gray, B. El Dasher, and C. Orme, Competitive Effects of Metal Dissolution and Passivation Modulated by Surface Structure: An AFM and EBSD Study of the Corrosion of Alloy 22, Surf. Sci., 2006, 600(12), p 2488–2494

    Article  CAS  Google Scholar 

  29. H. Tanaka, H. Esaki, K. Yamada, K. Shibue, and H. Yoshida, Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling, Mater. Trans., 2004, 45(1), p 69–74

    Article  CAS  Google Scholar 

  30. J. Yan, N. Heckman, L. Velasco, and A. Hodge, Improve Sensitization and Corrosion Resistance of an Al-Mg Alloy by Optimization of Grain Boundaries, Sci. Rep., 2016, 6, p 26870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The thanks are expressed to the financial support of the National Key Research and Development Program of China (2016YFB0300602), the National Natural Science Foundation of China (Grant Nos. U1960102, 51705103, 51475104), and the China Postdoctoral Science Foundation (Grant Nos. 2019TQ0057, 2019M661113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, J., Liu, Y. et al. Influence of Heat Input on Microstructure and Corrosion Resistance of Underwater Wet-Welded E40 Steel Joints. J. of Materi Eng and Perform 29, 6987–6996 (2020). https://doi.org/10.1007/s11665-020-05160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05160-7

Keywords

Navigation