Skip to main content
Log in

Formation of White Etching Layers by Deep Rolling of AISI 4140 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Deep rolling is an effective mechanical surface treatment method; however, the induced deformation may eventually lead to changes that result in a structure known as a white etching layer (WEL). The WEL possesses a distinct constitution and properties compared with the surrounding bulk material. The presence of the WEL drastically affects the surface integrity of the part and impairs the performance of the metallic components. However, the influence of deep rolling on WEL formation has not been fully clarified. Therefore, the goal of this study was to investigate WEL formation after deep rolling AISI 4140 steel with various microstructures (obtained through four heat treatment routes) and employing distinct rolling pressure and feed values. The results show that larger lattice distortion (resulting from refined martensitic structures) and higher deep rolling feed (increased work hardening) lead to the formation of a thicker WEL. Moreover, the increase in rolling pressure does not affect the WEL within the tested range. Finally, the mechanisms involved in WEL formation are discussed. It is suggested that the shear energy associated with deep rolling and applied along the surface grains leads to WEL formation by grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Klocke and J. Liermann, Roller Burnishing of Hard Turned Surfaces, Int. J. Mach. Tools Manuf., 1998, 38, p 419–423

    Article  Google Scholar 

  2. P. Juijerm and I. Altenberger, Fatigue Performance Enhancement of Steels Using Mechanical Surface Treatments, J. Met. Mater. Miner., 2007, 17, p 59–65

    CAS  Google Scholar 

  3. V. Schulze, F. Bleicher, P. Groche, Y.B. Guo, and Y.S. Pyun, Surface Modification by Machine Hammer Peening and Burnishing, CIRP Ann. Manuf. Technol., 2016, 65, p 809–832

    Article  Google Scholar 

  4. I. Altenberger, B. Scholtes, U. Martin, and H. Oettel, Cyclic Deformation and Near Surface Microstructures of Shot Peened or Deep Rolled Austenitic Stainless Steel AISI, 304, Mater. Sci. Eng. A, 1999, 264, p 1–16

    Article  Google Scholar 

  5. K. Lu and J. Lu, Surface Nanocrystallization (SNC) of Metallic Materials—Presentation of the Concept Behind a New Approach, J. Mater. Sci. Technol., 1999, 15, p 193–197

    Article  CAS  Google Scholar 

  6. W.L. Li, N.R. Tao, and K. Lu, Fabrication of a Gradient Nano–Micro-Structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment, Scr. Mater., 2008, 59, p 546–549

    Article  CAS  Google Scholar 

  7. B.N. Mordyuk and G.I. Prokopenko, Ultrasonic Impact Peening for Surface Properties’ Management, J. Sound Vib., 2007, 308, p 855–866

    Article  Google Scholar 

  8. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyy, A. Lamikiz, and G.I. Prokopenko, Effects of Laser Heat Treatment Combined with Ultrasonic Impact Treatment on the Surface Topography and Hardness of Carbon Steel AISI, 1045, Opt. Laser Technol., 2019, 111, p 424–438

    Article  CAS  Google Scholar 

  9. I. Altenberger, E.A. Stach, G. Liu, R.K. Nalla, and R.O. Ritchie, An In Situ Transmission Electron Microscope Study of the Thermal Stability of Near-Surface Microstructures Induced by Deep Rolling and Laser-Shock Peening, Scr. Mater., 2003, 48, p 1593–1598

    Article  CAS  Google Scholar 

  10. J. Munoz-Cubillos, J.J. Coronado, and S.A. Rodriguez, Deep Rolling Effect on Fatigue Behavior of Austenitic Stainless Steels, Int. J. Fatigue, 2017, 95, p 120–131

    Article  CAS  Google Scholar 

  11. C.C. Wong, A. Hartawan, and W.K. Teo, Deep Cold Rolling of Features on Aero-Engine Components, Procedia CIRP, 2014, 13, p 350–354

    Article  Google Scholar 

  12. S. Yang, O.W.J. Dillon, D.A. Puleo, and I.S. Jawahir, Effect of Cryogenic Burnishing on Surface Integrity Modifications of Co-Cr-Mo Biomedical Alloy, J. Biomed. Mater. Res. Part B, 2012, 101, p 139–152

    Google Scholar 

  13. B.J. Griffiths, Mechanisms of White Layer Generation with Reference to Machining and Deformation Processes, J. Tribol., 1987, 109, p 525–530

    Article  Google Scholar 

  14. S. Buchkremer, F. Klocke, B. Döbbeler, M. Abouridouane, and M. Meurer, Thermodynamics-Based Interpretation of White Layer Formation in Metal Cutting, Procedia CIRP, 2017, 58, p 370–374

    Article  Google Scholar 

  15. J. Wu, R.H. Petrov, M. Naeimi, Z. Li, R. Dollevoet, and J. Sietsma, Laboratory Simulation of Martensite Formation of White Etching Layer in Rail Steel, Int. J. Fatigue, 2016, 91, p 11–20

    Article  CAS  Google Scholar 

  16. X.-M. Zhang, L. Chen, and H. Din, Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel, J. Manuf. Sci. Eng., 2016, 138, p 1–9

    Google Scholar 

  17. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, Microstructure at Submicron Scale of the White Layer Produced by EDM Technique, J. Mater. Process. Technol., 2004, 149, p 289–295

    Article  CAS  Google Scholar 

  18. Z. Chen, M.H. Colliander, G. Sundell, R.L. Peng, J. Zhou, S. Johansson, and J. Moverare, Nano-Scale Characterization of White Layer in Broached Inconel 718, Mater. Sci. Eng. A, 2017, 684, p 373–384

    Article  CAS  Google Scholar 

  19. L.-B. Wan, S.-X. Li, S.-Y. Lu, Y.-S. Su, X.-D. Shu, and H.-B. Huang, Case Study: Formation of White Etching Layers in a Failed Rolling Element Bearing Race, Wear, 2018, 396-397, p 126–134

    Article  CAS  Google Scholar 

  20. A.M. Abrão, B. Denkena, J. Kohler, B. Breidenstein, T. Mörke, and P.C.M. Rodrigues, The Influence of Heat Treatment and Deep Rolling on the Mechanical Properties and Integrity of AISI, 1060 Steel, J. Mater. Process. Technol., 2014, 214, p 3020–3030

    Article  Google Scholar 

  21. S.B. Hosseini, T. Beno, U. Klement, J. Kaminski, and K. Ryttberg, Cutting Temperatures During Hard Turning—Measurements and Effects on White Layer Formation in AISI, 52100, J. Mater. Process. Technol., 2014, 214, p 1293–1300

    Article  CAS  Google Scholar 

  22. D. Umbrello and I.S. Jawahir, Numerical Modeling of the Influence of Process Parameters and Workpiece Hardness on White Layer Formation in AISI, 52100 Steel, Int. J. Adv. Manuf. Technol., 2009, 44, p 955–968

    Article  Google Scholar 

  23. H.W. Zhang, S. Ohsaki, S. Mitao, M. Ohnuma, and K. Hono, Microstructural Investigation of White Etching Layer on Pearlite Steel Rail, Mater. Sci. Eng. A, 2006, 421, p 191–199

    Article  Google Scholar 

  24. Y. Zhou, J.F. Peng, Z.P. Luo, B.B. Cao, X.S. Jin, and M.H. Zhu, Phase and Microstructural Evolution in White Etching Layer of a Pearlitic Steel During Rolling–Sliding Friction, Wear, 2016, 362-363, p 8–17

    Article  Google Scholar 

  25. M. Wojdyr, S. Gierlotka, J. Ivanisenko, W. Łojkowski, and H.J. Fecht, X-ray Investigations of the Natural and Artificial White Etching Layer, Solid State Phenom., 2005, 101-102, p 97–102

    Article  Google Scholar 

  26. M. Neslusan, M. Faktor, and M. Cillikova, Analysis of Surface Integrity After Hard Turning With Wiper Inserts, MM Sci. J., 2014. https://doi.org/10.17973/MMSJ.2014_10_201409

    Article  Google Scholar 

  27. J.F. Xie, Y.L. Zhu, and Y.L. Huang, The Effects of Ultrasound-Aided Deep Rolling Process on Fatigue Enhancement of 30CrMnSiNi2A Steel, ICSP, 2011, 11, p 61–66

    Google Scholar 

  28. K. Röttger, Walzen hartgedrehter Oberflächen, PhD Thesis, RWTH Aachen, Shaker Verlag, 2003, p 72, ISBN 3-8322-1177-2 (in German)

  29. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893

    Article  CAS  Google Scholar 

  30. A.R. Meysami, R. Ghasemzadeh, S.H. Seyedein, and M.R. Aboutalebi, An Investigation on the Microstructure and Mechanical Properties of Direct-Quenched and Tempered AISI, 4140 Steel, Mater. Des., 2010, 31, p 1570–1575

    Article  CAS  Google Scholar 

  31. S.S. Bosheh and P.T. Mativenga, White Layer Formation in Hard Turning of H13 Tool Steel at High Cutting Speeds Using CBN Tooling, Int. J. Mach. Tools Manuf., 2006, 46, p 225–233

    Article  Google Scholar 

  32. D. Meyer and J. Kämmler, Surface Integrity of AISI, 4140 After Deep Rolling With Varied External and Internal Loads, Procedia CIRP, 2016, 45, p 363–366

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian–German Collaborative Research Initiative on Manufacturing Technology (CAPES/DFG BRAGECRIM Grant No: 029/14). P.S. Souza is grateful to the staff of the Institute of Materials Science of Leibniz Universität Hannover for their technical support and fruitful discussions. Additional thanks go to Dr. Carlos E.H. Ventura for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Abrão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, P.S., Cangussu, V.M., Câmara, M.A. et al. Formation of White Etching Layers by Deep Rolling of AISI 4140 Steel. J. of Materi Eng and Perform 29, 4351–4359 (2020). https://doi.org/10.1007/s11665-020-04988-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04988-3

Keywords

Navigation