Skip to main content
Log in

Computational Study of Fatigue in Sub-grain Microstructure of Additively Manufactured Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additively manufactured (AM) materials experience shorter fatigue lives compared to their wrought form. Shorter fatigue life can be related to different effects like defects, residual stresses, surface finish, geometry, size, layer orientation, and heat treatment. One of the main contributors to the shorter fatigue life of AM alloys is their unique and complex microstructure. In this paper, we study this challenge from a novel perspective in which the interaction between the microstructure and fatigue life is explored. Among different microstructural features in the AM alloys, here we focus on the cells which form inside the grains during fabrication. While this microstructural feature is not always the prominent site for the fatigue initiation, it always has a significant role in the fatigue failure, particularly in high cycle fatigue because it occupies a high percentage of the volume in the material. A fatigue damage model is developed and verified to predict the life of cellular microstructures present in the AM metal microstructure. It is shown that the life of a cellular microstructure, which is composed of an arrangement of cells and cell boundaries is lower than a single-phase material without such an arrangement. We investigate how the arrangement if cells can govern the fatigue life, and analyze different cellular geometries to find the best performing cellular microstructure. By changing the geometrical parameters, the considerable variation in life can be as high as 95% in some strain amplitudes. Since the microstructure of cells in AM alloys can be tailored by changing the processing parameters, our results can be used as a guide to additively manufacture alloys with improved fatigue-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392

    Article  CAS  Google Scholar 

  2. T. Moritz and S. Maleksaeedi, Additive manufacturing of ceramic components, Additive Manufacturing, J. Zhang and Y.-G. Jung, Ed., Butterworth-Heinemann, Oxford, 2018, p 105–161

    Chapter  Google Scholar 

  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196

    Article  CAS  Google Scholar 

  4. J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, The Direct Metal Deposition of H13 Tool Steel for 3-D Components, JOM, 1997, 49(5), p 55–60

    Article  CAS  Google Scholar 

  5. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164

    Article  CAS  Google Scholar 

  6. M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, and M. Elahinia, Metals for Bone Implants. Part 1. Powder Metallurgy and Implant Rendering, Acta Biomater., 2014, 10(10), p 4058–4070

    Article  CAS  Google Scholar 

  7. X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, and D. Zhu, Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds, J. Mater. Eng. Perform., 2018, 27(7), p 3667–3677

    Article  CAS  Google Scholar 

  8. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35

    Google Scholar 

  9. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98, p 14–31

    Article  Google Scholar 

  10. L. Bian, S.M. Thompson, and N. Shamsaei, Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4V, JOM, 2015, 67(3), p 629–638

    Article  CAS  Google Scholar 

  11. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928

    Article  CAS  Google Scholar 

  12. A. Fatemi, R. Molaei, J. Simsiriwong, N. Sanaei, J. Pegues, B. Torries, N. Phan, and N. Shamsaei, Fatigue Behaviour of Additive Manufactured Materials: An Overview of Some Recent Experimental Studies on Ti-6Al-4V Considering Various Processing and Loading Direction Effects, Fatigue Fract. Eng. Mater. Struct., 2019, 42(5), p 991–1009

    Article  Google Scholar 

  13. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94, p 218–235

    Article  CAS  Google Scholar 

  14. A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Jr., Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018, 41(7), p 1602–1614

    Article  Google Scholar 

  15. R. Molaei, A. Fatemi, N. Sanaei, J. Pegues, N. Shamsaei, S. Shao, P. Li, D.H. Warner, and N. Phan, Fatigue of Additive Manufactured Ti-6Al-4V, Part II: The Relationship Between Microstructure, Material Cyclic Properties, and Component Performance, Int. J. Fatigue, 2020, 132, p 105363

    Article  Google Scholar 

  16. S. Romano, A. Brückner-Foit, A. Brandão, J. Gumpinger, T. Ghidini, and S. Beretta, Fatigue Properties of AlSi10Mg Obtained by Additive Manufacturing: Defect-Based Modelling and Prediction of Fatigue Strength, Eng. Fract. Mech., 2018, 187, p 165–189

    Article  Google Scholar 

  17. A. Ahmadi, R. Mirzaeifar, N.S. Moghaddam, A.S. Turabi, H.E. Karaca, and M. Elahinia, Effect of Manufacturing Parameters on Mechanical Properties of 316L Stainless Steel Parts Fabricated by Selective Laser Melting: A Computational Framework, Mater. Des., 2016, 112, p 328–338

    Article  CAS  Google Scholar 

  18. M.T. Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni, Spatter Formation in Selective Laser Melting Process Using Multi-laser Technology, Mater. Des., 2017, 131, p 460–469

    Article  Google Scholar 

  19. M.T. Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni, A Study on the Effect of Energy Input on Spatter Particles Creation during Selective Laser Melting Process, Addit. Manuf., 2017, 20, p 33–43

    Google Scholar 

  20. M.T. Andani, M. Ghodrati, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni, Damage Modeling of Metallic Alloys Made by Additive Manufacturing, Mater. Sci. Eng. A, 2019, 743, p 656–664

    Article  Google Scholar 

  21. M.T. Andani, M.R. Karamooz-Ravari, R. Mirzaeifar, and J. Ni, Micromechanics Modeling of Metallic Alloys 3D Printed by Selective Laser Melting, Mater. Des., 2018, 137, p 204–213

    Article  Google Scholar 

  22. F. Xie, Q. Chen, J. Gao, and Y. Li, Laser 3D Printing of Fe-Based Bulk Metallic Glass: Microstructure Evolution and Crack Propagation, J. Mater. Eng. Perform., 2019, 28(6), p 3478–3486

    Article  CAS  Google Scholar 

  23. K.G. Prashanth and J. Eckert, Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys, J. Alloy. Compd., 2017, 707, p 27–34

    Article  CAS  Google Scholar 

  24. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-Grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229

    Article  CAS  Google Scholar 

  25. D. Wang, C. Song, Y. Yang, and Y. Bai, Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299

    Article  CAS  Google Scholar 

  26. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 63

    Article  Google Scholar 

  27. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178

    Article  CAS  Google Scholar 

  28. M. Ghodrati, M. Ahmadian, and R. Mirzaeifar, Modeling of Rolling Contact Fatigue in Rails at the Microstructural Level, Wear, 2018, 406–407, p 205–217

    Article  Google Scholar 

  29. M. Ghodrati, M. Ahmadian, and R. Mirzaeifar, Three-Dimensional Study of Rolling Contact Fatigue Using Crystal Plasticity and Cohesive Zone Method, Int. J. Fatigue, 2019, 128, p 105208

    Article  CAS  Google Scholar 

  30. A. Ray and M.-K. Wu, Fatigue Damage Control of Mechanical Systems, Smart Mater. Struct., 1994, 3(1), p 47–58

    Article  Google Scholar 

  31. B. Zhao, F. Shen, Y. Cui, Y. Xie, and K. Zhou, Damage Analysis for an Elastic-Plastic Body in Cylindrical Contact with a Rigid Plane, Tribol. Int., 2017, 115, p 18–27

    Article  Google Scholar 

  32. S.C. Roy, S. Goyal, R. Sandhya, and S.K. Ray, Low Cycle Fatigue Life Prediction of 316 L(N) Stainless Steel Based on Cyclic Elasto-Plastic Response, Nucl. Eng. Des., 2012, 253, p 219–225

    Article  CAS  Google Scholar 

  33. A. Vijay and F. Sadeghi, An Anisotropic Damage Model for Tensile Fatigue, Fatigue Fract. Eng. Mater. Struct., 2019, 42(1), p 129–142

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Mr. Matthew Moneghan for his help in preparing the geometrical models for the simulations and Ms. Juanita Stephen for providing SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mirzaeifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodrati, M., Mirzaeifar, R. Computational Study of Fatigue in Sub-grain Microstructure of Additively Manufactured Alloys. J. of Materi Eng and Perform 29, 4631–4640 (2020). https://doi.org/10.1007/s11665-020-04935-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04935-2

Keywords

Navigation