Skip to main content

Advertisement

Log in

Investigation of the Correlation between Hydrogen Cathodic Charging Conditions and Toughness Properties of Longitudinal Submerged Arc Welded X65 Pipeline Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research work focuses on the investigation of the correlation between hydrogen cathodic charging conditions and toughness properties of a welded X65 pipeline steels. The experimental technique which was applied to determine the characteristic parameters associated with toughness was the crack tip open displacement after hydrogen cathodic charging process. The hydrogen cathodic charging process was carried out in an electrolytic cell with applied current densities of 10, 20, 30 mA/cm2 and hydrogen cathodic charging duration 48 h. Through this study, interesting results were provided concerning the diffusion depth and the diffusion coefficient of atomic hydrogen as far as toughness properties. The maximum diffusion depth value is assigned for each current density field in the region of heat-affected zone and the minimum in the area of fusion zone. In addition, the highest diffusion coefficients are attributed to heat-affected zone and the lowest to fusion zone, for all applied current densities. Finally, the fusion zone is considered to be more prone to the occurrence of embrittlement phenomena compared to base metal. The rate of toughness parameters drop is higher for current densities between 0-10 and 20-30 mA/cm2, where the cathodic current promotes the electrochemical reduction in hydrogen cations to atomic hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. Wang, Effects of Hydrogen on the Fracture Toughness of a X70 Pipeline Steel, Corros. Sci., 2009, 51, p 2803–2810

    Article  CAS  Google Scholar 

  2. R. Thodla, M.T. Piza Paes, and B. Gerst, Hydrogen Assisted Cracking of AISI, 4137 M Steel in O&G Environments, Int. J. Hydrogen Energy, 2015, 40, p 17051–17064

    Article  CAS  Google Scholar 

  3. C. Park, N. Kang, and S. Liu, Effect of Grain Size on the Resistance to Hydrogen Embrittlement of API, 2 W Grade 60 Steels Using In Situ Slow-Strain-raTe Testing, Corros. Sci., 2017, 128, p 33–41

    Article  CAS  Google Scholar 

  4. S.P. Lynch, The Minerals, “Hydrogen Effects in Materials”, Met. Mater. Soc., 2003, 26, p 153–156

    Article  Google Scholar 

  5. X. Ren, W. Chu, J. Li, Y. Su, and L. Qiao, The Effects of Inclusions and Second Phase Particles on Hydrogen-Induced Blistering in Iron, Mater. Chem. Phys., 2008, 107, p 231–235

    Article  CAS  Google Scholar 

  6. M.C. Tiegel, M.L. Martin, A.K. Lehmberg, M. Deutges, C. Borchers, and R. Kirchheim, Crack and Blister Initiation and Growth in Purified Iron Due to Hydrogen Loading, Acta Mater., 2016, 115, p 24–34

    Article  CAS  Google Scholar 

  7. D. Perez Escobar, C. Minambres, L. Duprez, K. Verbeken, and M. Verhaege, Internal and Surface Damage of Multiphase Steels and Pure Iron after Electrochemical Hydrogen Charging, Corros. Sci., 2011, 53, p 3166–3176

    Article  CAS  Google Scholar 

  8. X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, and L.J. Qiao, A Nucleation Mechanism of Hydrogen bliSter in Metals, Metall. Mater. Trans., 2008, 39, p 87–97

    Article  CAS  Google Scholar 

  9. M. Elboujdaini, R. Winston Revie (ed.), Uhlig’s Corrosion Handbook, Hydrogen-Induced Cracking and Sulfide Stress Cracking, Wiley, Hoboken (2001)

  10. E. De Bruycker, S. De Vroey, S. Huysmans, and J. Stubbe, Phenomenology of Hydrogen Flaking in Nuclear Reactor Pressure Vessels, Mater. Test., 2014, 56, p 439–444

    Article  CAS  Google Scholar 

  11. K.D. Chang, J.L. Gu, H.S. Fang, Z.G. Yang, B.Z. Bai, and W.Z. Zhang, Effects of Heat-treatment Process of a Novel Bainite/Martensite Dual-phase High Strength Steel on Its Susceptibility to Hydrogen Embrittlement, ISIJ Int., 2001, 41, p 1397–1401

    Article  CAS  Google Scholar 

  12. M. Cabrini, S. Lorenzi, S. Pelegrini, and T. Pastore, Environmentally Assisted Cracking and Hydrogen Diffusion in Traditional and High-Strength Pipeline Steels, Corros. Rev., 2015, 3, p 529–545

    Article  CAS  Google Scholar 

  13. M.B. Djukic, V. SijackiZeravcic, G.M. Bakic, A. Sedmak, and B. Rajicic, Hydrogen Damage of Steels: A Case Study and Hydrogen Embrittlement Model, Eng. Fail. Anal., 2015, https://doi.org/10.1016/j.engfailanal.2015.05.017

    Article  Google Scholar 

  14. M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, and B. Rajicic, The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion, Eng. Fract. Mech., 2019, https://doi.org/10.1016/j.engfracmech.2019.106528

    Article  Google Scholar 

  15. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng., 2010, 527, p 6997–7001

    Article  CAS  Google Scholar 

  16. H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2012, 22, p 170–175

    Article  CAS  Google Scholar 

  17. W. Zhao, Y. Wang, T. Zhang, and Y. Wang, Study on the Mechanism of High-Cycle Corrosion Fatigue Crack Initiation in X80 Steel, Corros. Sci., 2012, 57, p 99–103

    Article  CAS  Google Scholar 

  18. R. Pamnani, T. Jayakumar, M. Vasudevan, and T. Sakthivel, Investigations on the Impact Toughness of HSLA Steel Arc Welded Joints, J. Manuf. Process., 2016, 21, p 75–86

    Article  Google Scholar 

  19. R. Pamnani, V. Karthik, T. Jayakumar, M. Vasudevan, and T. Sakthivel, Evaluation of Mechanical Properties across Micro Alloyed HSLA Steel Weld Joints Using Automated Ball Indentation, Mater. Sci. Eng., 2016, 651, p 214–223

    Article  CAS  Google Scholar 

  20. J.J.M. Jebaraj, D.J. Morrison, and I.I. Suni, Hydrogen Diffusion Coefficients through Inconel 718 in Different Metallurgical conditions, Corros. Sci., 2014, 80, p 517–522

    Article  CAS  Google Scholar 

  21. T. Boiadjieva, L. Mirkova, H. Kronberger, T. Steck, and M. Monev, Hydrogen Permeation Through Steel Electroplated with Zn or Zn-Cr coati-ngs, Electrochim. Acta, 2013, 114, p 790–798

    Article  CAS  Google Scholar 

  22. Y. Kyo, A.P. Yadav, A. Nishikata, T. Tsuru, T. Zhang et al., Comparison of Hydrogen Embrittlement Susceptibility of Three Cathodic Protected Subsea Pipeline Steels from a Point of View of Hydrogen Permeation, Corros. Sci., 2018, 131, p 104–115

    Article  CAS  Google Scholar 

  23. K. Xu, “Evaluation of API 5L X80 Steel in High Pressure Hydrogen Gas”, ASTM G1 Hydrogen Embrittlement Workshop, 2005

  24. R.J. Walter and W.T. Chandler, “Cyclic-Load Crack Growth in ASME SA-105 Grade II Steel in High-Pressure Hydrogen at Ambient Temperature”, Effect of Hydrogen on Behavior of Materials Moran”, WY, 1976, p 273–286

  25. H.J. Cialone and J.H. Holbrook, Effects of Gaseous Hydrogen on Fatigue Crack Growth in Pipeline Steel, Metall. Trans. A, 1985, 16(1), p 115–122

    Article  Google Scholar 

  26. Q. Robert, L. Amaro, A. NehaRustagia, O. Kip, B. Findley, S. Elizabeth, A. Drexler, J. Andrew, and A. Slifka, Modeling the Fatigue Crack Growth of X100 Pipeline Steel in Gaseous Hydrogen, Int. J. Fatigue, 2014, 59, p 262–271

    Article  CAS  Google Scholar 

  27. L.W. Tsay, M.C. Young, and C. Chen, Fatigue Crack Growth Behavior of Laser-Processed 304 Stainless Steel in Air and Gaseous Hydrogen, Corros. Sci., 2003, 45, p 1985–1997

    Article  CAS  Google Scholar 

  28. M. Cabrini, S. Lorenzi, T. Pastore, and D.P. Bucella, Hydrogen Diffusion in Low Alloy Steels under Cyclic Loading, Corros. Rev., 2019, 37, p 459–467

    Article  CAS  Google Scholar 

  29. M. Cabrini, E. Sinigaglia, C. Spinelli, M. Tarenzi, C. Testa, and F.M. Bolzoni, Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J Integral Curve, Materials, 2019, 12, p 161–183

    Article  CAS  Google Scholar 

  30. M. Masoumi, C.C. Silva, and H.F. Gomes de Abreu, Effect of Crystallographic Orientations on the Hydrogen-Induced Cracking Resistance Improvement of API, 5L X70 Pipeline Steel under Various Thermomechanical Processing, Corros. Sci., 2016, 111, p 121–131

    Article  CAS  Google Scholar 

  31. Y. Zhao, Y. Seok, C. Choi, and Y.H. Lee, The Role of Hydrogen in Hardening/Softening Steel: Influence of the Charging Process, Scr. Mater., 2015, 107, p 140–156

    Article  CAS  Google Scholar 

  32. D. Zang, P. Maroevic, and R.B. McLellan, Hydrogen-Induced Vacancies on Metal Surfaces, J. Phys. Chem. Solids, 1999, 60, p 1649–1654

    Article  CAS  Google Scholar 

  33. R.B. McLellan and Z.R. Xu, Hydrogen-Induced Vacancies in the Iron Lattice, Scr. Mater., 1997, 36, p 1201–1205

    Article  CAS  Google Scholar 

  34. M. Åsa and S. Rolf, Hydrogen Depth Profile in Phosphorus-Doped, Oxygen-Free Copper after Cathodic Charging, J. Mater. Sci., 2012, 47, p 6768–6776

    Article  CAS  Google Scholar 

  35. C.N. Panagopoulos, A.S. El-Amoush, and K.G. Georgarakis, The Effect of Hydrogen Charging on the Mechanical Behaviour of α-Brass, J. Alloys Compd., 2005, 392, p 159–164

    Article  CAS  Google Scholar 

  36. B.E. Wilde, C.D. Kim, and E.H. Phelphs, Some Observations on the Role of Inclusions in the Hydrogen Induced Blister Cracking of Linepipe Steels in Sulfide Environments, Corrosion, 2000, 36, p 625–632

    Article  Google Scholar 

  37. E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, Hydrogen Diffusion into Three Metallurgical Microstructures of a C-Mn X65 and Low Alloy F22 Sour Service Steel Pipelines, Int. J.Hydrogen Energy, 2014, 39, p 13300–13313

    Article  CAS  Google Scholar 

  38. E. Shekari, M.R. Shishesaz, G.H. Rashed, M. Farzam, and E. Khayer, Failure Investigation of Hydrogen Blistering on Low Strength Carbon Steel, Iran. J. Oil Gas Sci. Technol., 2013, 2, p 65–76

    Google Scholar 

  39. T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of Non-metallic Inclusions on Hydrogen—Induced Cracking of API5L X100 Steel, Int. J.Hydrogen Energy, 2010, 35, p 8014–8021

    Article  CAS  Google Scholar 

  40. G.N. Haidemenopoulos, H. Koumoutsi, K. Polychronopoulou, P. Papageorgiou, I. Atlanis, P. Dimitriadis, and M. Stiakakis, Investigation of Stress Oriented Hydrogen Induced Cracking (SOHIC) in an Amine Absorber Column of an Oil Refinery, Metals, 2018, 8, p 663–680

    Article  CAS  Google Scholar 

  41. Y. Song, M. Chai, and G. Cheng, Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25 Cr-1 Mo-0.25 V Steel and Welds after Annealing, Materials, 2018, 11, p 499–513

    Article  CAS  Google Scholar 

  42. L.B. Peral, A. Zafra, C. Rodriguez, and J. Belzunce, Evaluation of Strength and Fracture Toughness of Ferritic High Strength Steels under Hydrogen Environments, Proc. Struct. Integr., 2017, 5, p 1275–1282

    Article  Google Scholar 

  43. E.V. Chatzidouros, V.I. Papazoglou, and D.I. Pantelis, Hydrogen Effect on a Low Carbon Ferritic–Bainitic Pipeline Steel, Int. J. Hydrogen Energy, 2014, 39, p 18498–18505

    Article  CAS  Google Scholar 

  44. E.V. Chatzidouros, A. Traidia, R.S. Devarapalli, D.I. Pantelis, and T.A. Steriotis, Effect of Hydrogen on Fracture Toughness Properties of a Pipeline Steel under Simulated Sour Service Conditions, Int. J. Hydrogen Energy, 2018, 43, p 5747–5759

    Article  CAS  Google Scholar 

  45. E.G. Astafurova, G.G. Maier, E.V. Melnikov, V.A. Moskvina, V.F. Vojtsik, G.N. Zakharov, A.I. Smirnov, and V.A. Bataev, Effect of Hydrogen Charging on Mechanical Twinning, Strain Hardening, and Fracture of <111> and <144> Hadfield Steel Single Crystals, Phys. Mesomech., 2018, 21, p 263–275

    Article  Google Scholar 

  46. A. Laureys, R. Petrov, E. Van den Eeckhout, and K. Verbeken, Effect of Deformation and Charging Conditions on Crack and Blister Formation during Electrochemical Charging, Acta Mater., 2017, 127, p 125–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Kyriakopoulou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriakopoulou, H.P., Belntekos, I.D., Tazedakis, A.S. et al. Investigation of the Correlation between Hydrogen Cathodic Charging Conditions and Toughness Properties of Longitudinal Submerged Arc Welded X65 Pipeline Steels. J. of Materi Eng and Perform 29, 3205–3219 (2020). https://doi.org/10.1007/s11665-020-04864-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04864-0

Keywords

Navigation