Skip to main content
Log in

Wear-Resistant Carbon-Fiber-Reinforced Ti-Based Composite Obtained by Laser Metal Deposition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Carbon-fiber-reinforced metal-matrix composites (Ti6Al4V/CFs) were tailored by laser metal deposition. Ti6Al4V/CFs represents a Ti-based matrix, inside which distributed carbon fibers, prime crystal-like titanium carbide (TiC) precipitates, and secondary TiC precipitates were formed. The metal matrix was provided by α martensitic phase and needle-like TiC distributed into the prior β grains. Soaking for 1 h at a temperature of 950 °C, quenching in water obtain coagulation and spheroidization of the α-phase and a decrease in the size of the primary β grain. Wear resistance of Ti6Al4V/CFs by heat treatment was improved to compare Ti6Al4V specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Tang and C. Hu, Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature. Ceramic Composites for Aerospace Applications: A Review, J. Mater. Sci. Technol., 2017, 33, p 117–130

    Google Scholar 

  2. K.N. Shivakumar, G. Swaminathan, and M. Sharpe, Carbon/Vinyl Ester Composites for Enhanced Performance in Marine Applications, J. Reinf. Plast. Compos., 2006, 33, p 1101–1116

    Google Scholar 

  3. V.S. Balakrishnan and H. Seidlitz, Potential Repair Techniques for Automotive Composites: A Review, Compos. Part. B Eng., 2018, 145, p 28–38

    Google Scholar 

  4. K. Chan, B. Jia, H. Lin, N. Hameed, J. Lee, and K. Lau, A Critical Review on Multifunctional Composites as Structural Capacitors for Energy Storage, Compos. Struct., 2018, 188, p 126–142

    Google Scholar 

  5. J. Xu, L. Zhao, X. Deng, and H. Yu, High Temperature Simulation of Short Carbon Fiber-Reinforced Nickel Base Composite, Mater. Des., 2006, 27, p 1152–1156

    CAS  Google Scholar 

  6. A. Khoddamzadeh, R. Liu, M. Liang, and Q. Yang, Wear Resistant Carbon Fiber Reinforced Stellite Alloy Composites, Mater. Des. (1980–2015), 2014, 56, p 487–494

    CAS  Google Scholar 

  7. J. Rams, A. Ureña, M.D. Escalera, and M. Sánchez, Electroless Nickel Coated Short Carbon Fibres in Aluminium Matrix Composites, Compos. Part. A Appl S, 2007, 38, p 566–575

    Google Scholar 

  8. L.G. Hou, R.Z. Wu, X.D. Wang, J.H. Zhang, M.L. Zhang, A.P. Dong, and B.D. Sun, Microstructure, Mechanical Properties and Thermal Conductivity of the Short Carbon Fiber Reinforced Magnesium Matrix Composites, J. Alloys Compd., 2017, 695, p 2820–2826

    CAS  Google Scholar 

  9. Y. Tang, H. Liu, H. Zhao, L. Liu, and Y. Wu, Friction and Wear Properties of Copper Matrix Composites Reinforced with Short Carbon Fibers, Mater. Des., 2008, 29, p 257–261

    CAS  Google Scholar 

  10. K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, and M. Naebe, Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part. A. Appl. Sci., 2017, 92, p 70–96

    CAS  Google Scholar 

  11. E. Akbarzadeh, J.A. Picas, and M. Teresa Baile, Microstructure and Properties of Aluminum Silicon/Short Fibre Carbon Composites Fabricated by Semi-Solid Thixomixing, Mater. Des., 2015, 88, p 683–692

    CAS  Google Scholar 

  12. Y. Sun, C. Hong, X. Zhang, J. Han, and Q. Qu, Preparation and Properties of SiOC Ceramic Modified Carbon Fiber Needled Felt Preform Composites, Ceram. Int., 2020, 46, p 1743–1749

    CAS  Google Scholar 

  13. Ch Shi, J. Lei, S. Zhou, X. Dai, and L. Zhang, Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-Based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents, J. Alloys Compd., 2018, 744(5), p 146–155

    CAS  Google Scholar 

  14. J. Lei, C. Shi, S. Zhou, Z. Gu, and L. Zhang, Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-Based Composite Coating by Laser Cladding, Surf. Coat. Technol., 2018, 334, p 274–285

    CAS  Google Scholar 

  15. L. Liu, W. Li, Y. Tang, B. Shen, and W. Hu, Friction and Wear Properties of Short Carbon Fiber Reinforced Aluminum Matrix Composites, Wear, 2009, 266(7–8), p 733–738

    CAS  Google Scholar 

  16. I. Gurrappa, Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications, Mater. Charact., 2003, 51, p 131–139

    CAS  Google Scholar 

  17. C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, Biomedical Applications of Titanium and Its Alloys, J. Miner. Met. Mater. Soc., 2008, 60(3), p 46–49

    CAS  Google Scholar 

  18. Y. Hatta, T. Sakai, T. Shiraki, T. Sannohe, and O. Tada, Process for Production of Titanium Alloy, US Patent no 6918942 B2, 2005 (July 19).

  19. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R, 2004, 47(3–4), p 49–121

    Google Scholar 

  20. F. Weng, C. Chen, and H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412–425

    CAS  Google Scholar 

  21. Z. Zhou, X. Liu, S. Zhuang, M. Wang, Y. Luo, R. Tu, and S. Zhou, Laser in Situ Synthesizing Ti5Si3/Al3Ni2 Reinforced Al3Ti/NiTi Composite Coatings: Microstructure, Mechanical Characteristics and Oxidation Behavior, Opt. Laser Technol., 2019, 109, p 99–109

    CAS  Google Scholar 

  22. Y. Yang, C. Zhang, Y. Dai, and J. Luo, Tribological Properties of Titanium Alloys Under Lubrication of SEE Oil and Aqueous Solutions, Tribol. Int., 2017, 109, p 40–47

    CAS  Google Scholar 

  23. M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, and H. Mohammadian-Semnani, Influence of Using Electroless Ni-P Coated WC-Co Powder on Laser Cladding of Stainless Steel, Surf. Coat. Technol., 2018, 348, p 41–54

    CAS  Google Scholar 

  24. Y.S. Tian, C.Z. Chen, D.Y. Wang, and T.Q. Lei, Laser Surface Modification of Titanium Alloys—A Review, Surf. Rev. Lett., 2005, 12, p 123–130

    CAS  Google Scholar 

  25. N. Chandra, M. Sharma, D.K. Singh, and S.S. Amritphale, Synthesis of Nano-TiC Powder Using Titanium Gel Precursor and Carbon Particles, Mater. Lett., 2009, 63, p 1051–1053

    CAS  Google Scholar 

  26. M. Razavi, M.R. Rahimipour, and A.H. Rajabi-Zamani, Synthesis of Nanocrystalline TiC Powder from Impure Ti Chips Via Mechanical Alloying, J. Alloys Compd., 2007, 436, p 142–145

    CAS  Google Scholar 

  27. H. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, Park Ridge, 1996

    Google Scholar 

  28. H. Jia, Z. Zhanga, Z. Qia, G. Liu, and X. Biana, Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., 2009, 472, p 97–103

    CAS  Google Scholar 

  29. B.H. Lohse, A. Calka, and D. Wexler, Effect of Starting Composition on the Synthesis of Nanocrystalline TiC During Milling of Titanium and Carbon, J. Alloys Compd., 2005, 394, p 148–151

    CAS  Google Scholar 

  30. L. Bo, C. Lishan, Z. Yanjun, and X. Chunming, Synthesis of TiC Powder by Mechanical Alloying of Titanium and Asphalt, Chin. J. Chem. Eng., 2007, 15, p 138–140

    Google Scholar 

  31. B. Cochepin, V. Gauthier, D. Vrel, and S. Dubois, Crystal Growth of TiC Grains During SHS Reactions, J. Cryst. Growth, 2007, 304, p 481–486

    CAS  Google Scholar 

  32. B. Cochepin, E. Heian, N. Karnatak, D. Vrel, and S. Dubois, TiC Nucleation/Growth Processes During SHS Reactions, Powder Technol., 2005, 157, p 92–99

    Google Scholar 

  33. M.B. Rahaei, R. Yazdani rad, A. Kazemzadeh, and T. Ebadzadeh, Mechanochemical Synthesis of Nano TiC Powder by Mechanical Milling of Titanium and Graphite Powders, Powder Technol., 2012, 217, p 369–376

    CAS  Google Scholar 

  34. S. Mohapatra, D. Kumar Mishra, and S. Kumar Singh, Microscopic and Spectroscopic Analyses of TiC Powder Synthesized by Thermal Plasma Technique, Powder Technol., 2013, 237, p 41–45

    CAS  Google Scholar 

  35. X.-Y. Tan, L.-M. Luo, H. Chena, P. Li, G. Luo, X. Zan, J. Cheng, and Y. Wu, Synthesis and Formation Mechanism of W/TiC Composite Powders by a Wet Chemical Route, Powder Technol., 2015, 280, p 83–88

    CAS  Google Scholar 

  36. B. AlMangour, D. Grzesiak, and J.-M. Yang, In Situ Formation of TiC-Particle-Reinforced Stainless Steel Matrix Nanocomposites During Ball Milling: Feedstock Powder Preparation for Selective Laser Melting at Various Energy Densities, Powder Technol., 2018, 326, p 467–478

    CAS  Google Scholar 

  37. F. Saba, S. Abdolkarim Sajjadi, A. Ghadirzadeh, and F. Di Fonzo, A Novel Method for Enhancing Interface Strength of TiC Coated Layer/Ti Substrate, Adv. Powder Technol., 2016, 27, p 354–359

    CAS  Google Scholar 

  38. M.M. Savalani, C.C. Ng, Q.H. Li, and H.C. Man, In Situ Formation of Titanium Carbide Using Titanium and Carbon-Nanotube Powders by Laser Cladding, Appl. Surf. Sci., 2012, 258, p 3173–3177

    CAS  Google Scholar 

  39. A.I. Gorunov, Complex Refurbishment of Titanium Turbine Blades by Applying Heat-Resistant Coatings by Direct Metal Deposition, Eng. Fail. Anal., 2018, 86, p 115–130

    CAS  Google Scholar 

  40. X. Su, W. Tao, Y. Chen, X. Chen, and Z. Tian, Microstructural Characteristics and Formation Mechanism of Laser Cladding of Titanium Alloys on Carbon Fiber Reinforced Thermoplastics, Mater. Lett., 2017, 195, p 228–231

    CAS  Google Scholar 

  41. A.I. Gorunov, Laser Alloying of Surface of Ti-5.5Al-2Zr-1Mo-1V Titanium Near-α-Alloy Prepared Via Melted by Pulsed Laser Radiation TiC Particles, Lasers Manuf. Mater. Process., 2019, 6, p 26–40

    Google Scholar 

  42. A.I. Gorunov, Investigation Microstructure of Carbon Fibers Reinforced Composite on Fe and Ni-Based Obtained by Laser Metal Deposition, Surf. Coat. Technol., 2019, 364, p 279–288

    CAS  Google Scholar 

  43. X.-B. Liu, X.-J. Meng, H.-Q. Liu, G.-L. Shi, S.-H. Wu, C.-F. Sun, M.-D. Wang, and L.-H. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409

    CAS  Google Scholar 

  44. B. AlMangour, D. Grzesiak, and J.-M. Yang, Selective Laser Melting of TiB2/316L Stainless Steel Composites: The Roles of Powder Preparation and Hot Isostatic Pressing Post-Treatment, Powder Technol., 2017, 309, p 37–48

    CAS  Google Scholar 

  45. B. AlMangour, D. Grzesiak, and J.-M. Yang, In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418

    CAS  Google Scholar 

  46. B. AlMangour, D. Grzesiak, J. Cheng, and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Technol., 2018, 257, p 288

    CAS  Google Scholar 

  47. C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, and R. Poprawe, Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 Based Composite Parts: Tailored Microstructures and Enhanced Performance, Mater. Sci. Eng. A, 2015, 635, p 118–128

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Russian Science Foundation No. 19-79-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gorunov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorunov, A.I. Wear-Resistant Carbon-Fiber-Reinforced Ti-Based Composite Obtained by Laser Metal Deposition. J. of Materi Eng and Perform 29, 3305–3314 (2020). https://doi.org/10.1007/s11665-020-04835-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04835-5

Keywords

Navigation