Skip to main content

Advertisement

Log in

Microstructural Characteristics and Tensile Behavior of a Hot-Rolled Medium-Mn Steel (0.25C-8.5Mn-0.5Si-2.5Al) Processed by Intercritical Annealing Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructural characteristics and tensile behavior of a novel hot-rolled medium-Mn steel, 0.25C-8.5Mn-0.5Si-2.5Al (wt.%), under different intercritical annealing temperatures (TIA) were evaluated. The results show that an ultrafine duplex lamellar microstructure with a maximum volume fraction of retained austenite (RA) of 65 vol.% was obtained at TIA of 750 °C. It was found that both the stability of the RA and its stability range play critical role in controlling the sustainable TRIP effect. The product of ultimate tensile strength and total elongation as high as ~ 66 GPa% was obtained at TIA of 725 °C, which is much higher than those of previously investigated medium-Mn steels with similar Mn contents, indicating a great potential for the tested steel. The analysis of the fracture surface revealed that the steel exhibited a kind of micro-delamination fracture, which was found to be primarily nucleated at the interfaces of the transformation-induced martensite and ferrite, and the micro-delamination fracture became more significant with increasing TIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Takahashi, Sheet Steel Technology for the Last 100 Years: Progress in Sheet Steels in Hand with the Automobile Industry, ISIJ Int., 2015, 55, p 79–88

    CAS  Google Scholar 

  2. D.W. Suh and S.J. Kim, Medium Mn Transformation-Induced Plasticity Steels: Recent Progress and Challenges, Scr. Mater., 2017, 126, p 63–67

    CAS  Google Scholar 

  3. Y.K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31, p 843–856

    CAS  Google Scholar 

  4. H. Dong, W.Q. Cao, J. Shi, C.Y. Wang, M.Q. Wang, and Y.Q. Weng, Microstructure and Performance Control Technology of the 3rd Generation Auto Sheet Steels, Iron Steel, 2011, 46(6), p 1–11

    Google Scholar 

  5. E. De Moor, P.J. Gibbs, J.G. Speer, D.K. Matlock, and J. Schroth, Strategies for Third-Generation Advanced High-Strength Steel Development, Iron Steel Technol., 2010, 7, p 133–144

    Google Scholar 

  6. C.W. Shao, W.J. Hui, Y.J. Zhang, X.L. Zhao, and Y.Q. Weng, Microstructure and Mechanical Properties of Hot-Rolled Medium-Mn Steel Containing 3% Aluminum, Mater. Sci. Eng., A, 2017, 682, p 45–53

    CAS  Google Scholar 

  7. S.J. Lee, S.M. Shin, M.Y. Kwon, K.Y. Lee, and B.C. De Cooman, Tensile Properties of Medium Mn Steel with a Bimodal UFG α + γ and Coarse δ-Ferrite Microstructure, Metall. Mater. Trans. A, 2017, 48, p 1678–1700

    CAS  Google Scholar 

  8. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, and H.X. Li, Microstructural Evolution and Deformation Behavior in the Fe-(6,8.5)Mn-3Al-0.2C TRIP Steels, Mater. Sci. Eng., A, 2016, 672, p 161–169

    CAS  Google Scholar 

  9. Z.H. Cai, H. Ding, H. Kamoutsi, G.N. Haidemenopoulos, and R.D.K. Misra, Interplay Between Deformation Behavior and Mechanical Properties of Intercritically Annealed and Tempered Medium-Manganese Transformation-Induced Plasticity Steel, Mater. Sci. Eng., A, 2016, 654, p 359–367

    CAS  Google Scholar 

  10. J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The Effects of the Initial Martensite Microstructure on the Microstructure and Tensile Properties of Intercritically Annealed Fe-9Mn-0.05C Steel, Acta Mater., 2014, 78, p 369–377

    CAS  Google Scholar 

  11. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42, p 3691–3702

    CAS  Google Scholar 

  12. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, and W.Q. Cao, Development of Ultrafine Lamellar Ferrite and Austenite Duplex Structure in 0.2C5Mn Steel During ART-Annealing, ISIJ Int., 2011, 51, p 651–656

    CAS  Google Scholar 

  13. B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent Progress in Medium-Mn Steels Made with New Designing Strategies, a Review, J. Mater. Sci. Technol., 2017, 33, p 1457–1464

    Google Scholar 

  14. M.H. Cai, H.S. Huang, J.H. Su, H. Ding, and P.D. Hodgson, Enhanced Tensile Properties of a Reversion Annealed 6.5Mn-TRIP Alloy via Tailoring Initial Microstructure and Cold Rolling Reduction, J. Mater. Sci. Technol., 2018, 34(8), p 1428–1435

    Google Scholar 

  15. Z.H. Cai, H. Ding, Z.Y. Ying, and R.D.K. Misra, Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat-Treated Fe-8Mn-4Al-0.2C Steel, J. Mater. Eng. Perform., 2014, 23, p 1131–1137

    CAS  Google Scholar 

  16. S.J. Lee, S.W. Lee, and B.C. De Cooman, Mn Partitioning During the Intercritical Annealing of Ultrafine-Grained 6% Mn Transformation-Induced Plasticity Steel, Scr. Mater., 2011, 64, p 649–652

    CAS  Google Scholar 

  17. X.N. Luo, X.Y. Zhong, H.W. Luo, H.H. Zhou, C.Y. Wang, and J. Shi, Mn Diffusion at Early Stage of Intercritical Annealing of 5Mn Steel, J. Iron Steel Res. Inter., 2015, 22, p 1015–1019

    Google Scholar 

  18. R.L. Miller, Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels, Metall. Trans. A, 1972, 3, p 905–912

    CAS  Google Scholar 

  19. M.J. Merwin, Low-Carbon Manganese TRIP Steels, Mater. Sci. Forum, 2007, 539–543, p 4327–4332

    Google Scholar 

  20. B. Hu and H.W. Luo, A Strong and Ductile 7Mn Steel Manufactured by Warm Rolling and Exhibiting Both Transformation and Twinning Induced Plasticity, J. Alloy. Compd., 2017, 725, p 684–693

    CAS  Google Scholar 

  21. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim, Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metall. Mater. Trans. A, 2010, 41, p 397–408

    Google Scholar 

  22. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite Stability and Deformation Behavior in a Cold-Rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236

    CAS  Google Scholar 

  23. I. Gutierrez-Urrutia and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels, Scr. Mater., 2013, 68, p 343–347

    CAS  Google Scholar 

  24. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J.V. Humbeeck, Comparison of the Effects of Silicon and Aluminium on the Tensile Behaviour of Multiphase TRIP-Assisted Steels, Scr. Mater., 2001, 44, p 885–892

    CAS  Google Scholar 

  25. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-Ray Diffraction During Cooling, Acta Mater., 2005, 53, p 5439–5447

    Google Scholar 

  26. D.Y. Lee, J.K. Kim, S.W. Lee, K.Y. Lee, and B.C. De Cooman, Microstructures and Mechanical Properties of Ti and Mo Micro-alloyed Medium Mn Steel, Mater. Sci. Eng., A, 2017, 706, p 1–14

    CAS  Google Scholar 

  27. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia, Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels, Metall. Mater. Trans. A, 2013, 44A, p 286–293

    Google Scholar 

  28. S.W. Lee and B.C. De Cooman, Tensile Behavior of Intercritically Annealed Ultra-Fine Grained 8% Mn Multi-phase Steel, Steel Res. Int., 2015, 86, p 1170–1178

    CAS  Google Scholar 

  29. S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, and H.N. Han, Microstructure and Tensile Behavior of Duplex Low-Density Steel Containing 5 Mass% Aluminum, Scr. Mater., 2013, 68, p 365–369

    CAS  Google Scholar 

  30. Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding, Mechanical Properties and Deformation Behavior in Hot-Rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP Steel: The Discontinuous TRIP Effect, Mater. Sci. Eng., A, 2016, 673, p 63–72

    CAS  Google Scholar 

  31. D. Embury and O. Bouaziz, Steel-Based Composites: Driving Forces and Classification, Annu. Rev. Mater. Res., 2010, 40, p 213–241

    CAS  Google Scholar 

  32. W.J. Hui, C.W. Shao, Y.J. Zhang, X.L. Zhao, and Y.Q. Weng, Microstructure and Mechanical Properties of Medium Mn Steel Containing 3%Al Processes by Warm Rolling, Mater. Sci. Eng., A, 2017, 707, p 501–510

    CAS  Google Scholar 

  33. H.K. Choi, S.J. Lee, J.W. Lee, F. Barlat, and B.C. De Cooman, Characterization of Fracture in Medium Mn Steel, Mater. Sci. Eng., A, 2017, 687, p 200–210

    CAS  Google Scholar 

  34. M.Y. Seok, I.C. Choi, J. Moon, S. Kim, U. Ramamurty, and J.I. Jang, Estimation of the Hall-Petch Strengthening Coefficient of Steels Through Nanoindentation, Scr. Mater., 2014, 87, p 49–52

    CAS  Google Scholar 

  35. R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang, Intercritical Rolling Induced Ultrafine Microstructure and Excellent Mechanical Properties of the Medium-Mn Steel, Mater. Sci. Eng., A, 2013, 583, p 84–88

    CAS  Google Scholar 

  36. H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong, Heat Treatment Effects on the Microstructure and Mechanical Properties of a Medium Manganese Steel (0.2C-5Mn), Mater. Sci. Eng., A, 2012, 532, p 435–442

    CAS  Google Scholar 

  37. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of Microstructure on Retained Austenite Stability and Work Hardening of TRIP Steels, Mater. Sci. Eng., A, 2011, 528, p 4516–4521

    Google Scholar 

  38. J. Shi, X.J. Sun, W.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao, Enhanced Work-Hardening Behavior and Mechanical Properties in Ultrafine-Grained Steels with Large-Fractioned Metastable Austenite, Scr. Mater., 2010, 63, p 815–818

    CAS  Google Scholar 

  39. Y.H. Nie, Y. Kimura, T. Inoue, F.X. Yin, E. Akiyama, and K. Tsuzaki, Hydrogen embrittlement of a 1500-MPa tensile strength level steel with an ultrafine elongated grain structure, Metall. Mater. Trans. A, 2012, 43, p 1670–1687

    CAS  Google Scholar 

  40. J.J. Sun, T. Jiang, Y. Sun, Y.J. Wang, and Y.N. Liu, A Lamellar Structured Ultrafine Grain Ferrite-Martensite Dual Phase Steel and its Resistance to Hydrogen Embrittlement, J. Alloy. Compd., 2017, 698, p 390–399

    CAS  Google Scholar 

  41. Y.J. Zhang, W.J. Hui, J.J. Wang, M. Lei, and X.L. Zhao, Enhancing the Resistance to Hydrogen Embrittlement of Al-Containing Medium-Mn Steel Through Heavy Warm Rolling, Scr. Mater., 2019, 165, p 15–19

    CAS  Google Scholar 

  42. Q. Tonizzo, A.F. Gourgues-Lorenzon, M. Mazière, and A. Perlade, Microstructure, Plastic Flow and Fracture Behavior of Ferrite-Austenite Duplex Low Density Medium Mn Steel, Mater. Sci. Eng., A, 2017, 706, p 217–236

    CAS  Google Scholar 

  43. G. Avramovic-Cingara, C. Saleh, M.K. Jain, and D.S. Wilkinson, Void Nucleation and Growth in Dual-Phase Steel 600 During Uniaxial Tensile Testing, Metall. Mater. Trans. A, 2009, 40, p 3117–3127

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2017RC024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Xie, Z. et al. Microstructural Characteristics and Tensile Behavior of a Hot-Rolled Medium-Mn Steel (0.25C-8.5Mn-0.5Si-2.5Al) Processed by Intercritical Annealing Treatment. J. of Materi Eng and Perform 29, 2623–2634 (2020). https://doi.org/10.1007/s11665-020-04755-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04755-4

Keywords

Navigation