Skip to main content
Log in

Atmospheric Corrosion Resistance of Weathering Angle Steels in a Simulated Industrial Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influences of RE, Cr, P and P-RE elements on atmospheric corrosion resistance behaviors of weathering angle steels in a simulated industrial atmosphere were investigated by periodic immersion wet/dry cyclic corrosion test. According to weight loss test and rust analysis results, the corrosion rate is relatively faster in the initial stage of the corrosion since the compositions of rust layer are mainly γ-FeOOH and Fe3O4. Then, γ-FeOOH and Fe3O4 gradually transform to α-FeOOH and the corrosion rate reduces. The increasing amount of α-FeOOH with enhanced corrosion resistance is related to the addition of phosphorus element and the enrichment of copper, chromium and nickel elements in inner rust layer. Besides, rare earth can reduce the content of chromium and work with phosphorus to improve atmospheric corrosion resistance of steel. Consequently, weathering angle steel containing phosphorus and rare earth elements exhibits high corrosion resistance, and the electrochemical measurement on it indicates that the anodic process is inhibited and the evolution of resistance increases with the prolongation of immersion time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.S. Qing, X.D. Duan, M.F. Xiao, J.Q. Li, M. Liu, Q. Liu, and H.F. Shen, Study on the Cracking Mechanism of YQ450NQR1 High-Strength Weathering Steel, Strength Mater., 2018, 50(1), p 176–183

    Article  CAS  Google Scholar 

  2. I.M. Allam, J.S. Arlow, and H. Saricimen, Initial Stages of Atmospheric Corrosion of Steel in the Arabian Gulf, Corros. Sci., 1991, 32(4), p 417–432

    Article  CAS  Google Scholar 

  3. D.O.N.G. Jun-hua, Rusting Evolution of Mn-Cu Alloying Steel in a Simulated Coastal Environment, Corros. Sci. Prot. Technol., 2010, 22(4), p 261–265

    Google Scholar 

  4. T. Zhu, F. Huang, J. Liu, Q. Hu, and W. Li, Effects of Inclusion on Corrosion Resistance of Weathering Steel in Simulated Industrial Atmosphere, Anti-Corros. Methods Mater., 2016, 63(6), p 490–498

    Article  CAS  Google Scholar 

  5. L. Hao, S. Zhang, J. Dong, and W. Ke, Evolution of Atmospheric Corrosion of MnCuP Weathering Steel in a Simulated Coastal-Industrial Atmosphere, Corros. Sci., 2012, 59, p 270–276

    Article  CAS  Google Scholar 

  6. L. Hao, S. Zhang, J. Dong, and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53(12), p 4187–4192

    Article  CAS  Google Scholar 

  7. C. Liu, R.I. Revilla, D. Zhan, Z. Liu, A. Lutz, F. Zhang, and H. Terryn, Role of Al2O3 Inclusions on the Localized Corrosion of Q460NH Weathering Steel in Marine Environment, Corros. Sci., 2018, 138, p 96–104

    Article  CAS  Google Scholar 

  8. Y. Lijie, W. Longmei, and H. Jinsheng, Effects of Rare Earth on Inclusions and Corrosion Resistance of 10PCuRE Weathering Steel, J. Rare Earths, 2010, 28(6), p 952–956

    Article  Google Scholar 

  9. Q. Zhao, Z. Wang, E. Fan, X. Wu, Y. Huang, and X. Li, Effects of Nanosized Nb Carbide Precipitates on the Corrosion Behavior of High-Strength Low-Alloy Steel in Simulated Seawater, Int. J. Electrochem. Sci., 2017, 12(9), p 7989–7996

    Article  CAS  Google Scholar 

  10. W.G. Wilson, D.A.R. Kay, and A. Vahed, The Use of Thermodynamics and Phase Equilibria to Predict the Behavior of the Rare Earth Elements in Steel, JOM, 1974, 26(5), p 14–23

    Article  CAS  Google Scholar 

  11. M.F. Montemor, A.M. Simoes, and M.G.S. Ferreira, Composition and Corrosion Behaviour of Galvanised Steel Treated with Rare-Earth Salts: The Effect of the Cation, Prog. Org. Coat., 2002, 44(2), p 111–120

    Article  CAS  Google Scholar 

  12. Y. Qian, J. Xu, and M. Li, An Accelerated Testing Method for the Evaluation of Atmospheric Corrosion Resistance of Weathering Steels, Anti-Corros. Methods Mater., 2015, 62(2), p 77–82

    Article  CAS  Google Scholar 

  13. Y. Qian, C. Ma, D. Niu, J. Xu, and M. Li, Influence of Alloyed Chromium on the Atmospheric Corrosion Resistance of Weathering Steels, Corros. Sci., 2013, 74, p 424–429

    Article  CAS  Google Scholar 

  14. R.A. Legault and A.G. Preban, Kinetics of the Atmospheric Corrosion of Low-Alloy Steels in an Industrial Environment, Corrosion, 1975, 31(4), p 117–122

    Article  CAS  Google Scholar 

  15. D.C. Smith and B. McEnaney, The Influence of Dissolved Oxygen Concentration on the Corrosion of Grey Cast Iron in Water at 50 °C, Corros. Sci., 1979, 19(6), p 379–394

    Article  CAS  Google Scholar 

  16. Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51(5), p 997–1006

    Article  CAS  Google Scholar 

  17. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of Corrosion Products Formed on Ni 2.4 wt%–Cu 05 wt.%–Cr 0.5 wt% Weathering Steel Exposed in Marine Atmospheres, Corros. Sci., 2014, 87, p 438–451

    Article  CAS  Google Scholar 

  18. A. Usami, H. Kihira and T. Kusunoki, 3% Ni-Weathering Steel Plate for Uncoated Bridges at High Air-Bone Salt Environments, Shinnittetsu Giho, (2002), p. 19–21

  19. M. Kimura, H. Kihira, M. Nomura, and Y. Kitajima, Corrosion Protection Mechanism of the Advanced Weathering Steel in a Coastal Area, Electrochem. Soc. Proc., 2004, 14, p 133–142

    Google Scholar 

  20. K.W.D. Junhua, Study on the Rusting Evolution and the Performance of Resisting to Atmospheric Corrosion for Mn-Cu Steel, Acta Metall. Sin., 2010, 46(11), p 1365–1378

    Google Scholar 

  21. F.Y. Mi, X.D. Wang, Z.P. Liu, B. Wang, Y. Peng, and D.P. Tao, Industrial Atmospheric Corrosion Resistance of P-RE Weathering Steel, J. Iron. Steel Res. Int., 2011, 18(6), p 67–73

    Article  CAS  Google Scholar 

  22. H. Okada, Y. Hosoi, K.I. Yukawa, and H. Naito, Structure of the Rust Formed on Low Alloy Steels in Atmospheric Corrosion, Tetsu-to-Hagane, 1969, 55(5), p 355–365

    Article  CAS  Google Scholar 

  23. K. Asami and M. Kikuchi, In-Depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal–Industrial Atmosphere for 17 years, Corros. Sci., 2003, 45(11), p 2671–2688

    Article  CAS  Google Scholar 

  24. Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion Behaviour of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2003, 77(2), p 603–608

    Article  CAS  Google Scholar 

  25. Y.S. Choi and J.G. Kim, Aqueous Corrosion Behavior of Weathering Steel and Carbon Steel in Acid-Chloride Environments, Corrosion, 2000, 56(12), p 1202–1210

    Article  CAS  Google Scholar 

  26. W. Bing, L. Qingyou, and W. XiangDong, Effect of Rare Earth on Corrosion Resistance of Carbon Steel in Simulated Industrial Atmospheric Environment, J. Iron Steel Res., 2009, 21(8), p 35–40

    Google Scholar 

  27. H. Kihira, S. Ito, and T. Murata, The Behavior of Phosphorous During Passivation of Weathering Steel by Protective Patina Formation, Corros. Sci., 1990, 31, p 383–388

    Article  CAS  Google Scholar 

  28. Y. Hongmei, W. Xiangdong, and L. Ji, Effect of Rare Earth on Corrosion Resistance of Phosphorous Steel, Iron Steel, 2007, 42(12), p 69–72

    Google Scholar 

  29. L. Hao, S. Zhang, J. Dong, and W. Ke, Rusting Evolution of MnCuP Weathering Steel Submitted to Simulated Industrial Atmospheric Corrosion, Metall. Mater. Trans. A, 2012, 43(5), p 1724–1730

    Article  CAS  Google Scholar 

  30. H.E. Townsend, Effects of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres, Corrosion, 2001, 57(6), p 497–501

    Article  CAS  Google Scholar 

  31. D.C. Cook, Spectroscopic Identification of Protective and Non-protective Corrosion Coatings on Steel Structures in Marine Environments, Corros. Sci., 2005, 47(10), p 2550–2570

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The investigation is supported by the Development Award Fund of CITIC Nb-Steel and the National Natural Science Foundation of China (No. 51801149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zhou, C., Gao, Y. et al. Atmospheric Corrosion Resistance of Weathering Angle Steels in a Simulated Industrial Atmosphere. J. of Materi Eng and Perform 29, 1225–1234 (2020). https://doi.org/10.1007/s11665-020-04666-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04666-4

Keywords

Navigation