Skip to main content
Log in

Studies on Creep and Wear Behavior of Mo-40Ti-10Si Alloy Prepared by Hot Pressing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study deals with the development and characterization of a Mo-Ti-Si alloy by pressure-assisted sintering for high-temperature applications. The three-phase alloy was found to be consisted of (Mo,Ti)3Si-type silicide and discontinuous Mo-rich and Ti-rich α-(Mo, Ti)ss phases. The alloy was characterized for mechanical properties, creep, and wear behavior. Elastic modulus and hardness of all the constituent phases were determined using nanoindentation technique. Creep properties of the alloy determined from the compression creep tests in vacuum were found to be better than the single-phase Mo5Si3 and Ti5Si3 at the tested temperature of 1000 °C. The coefficient of friction values were found to be 0.59, 0.55 and 0.4 at the testing loads of 10, 15 and 20 N, respectively, at 10 Hz frequency in reciprocal testing mode at room temperature, while 0.42 at 500 °C with a load of 15 N. The dominant wear mechanism was proposed based on the wear scar analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.O. Soboyejo and T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications, W.O. Soboyejo and T.S. Srivatsan, Ed., CRC Press, Boca Raton, FL, 2007, p 475–493

    Google Scholar 

  2. S.E.G. Mohamed and J.-M. Tournier, A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems, J. Nuclear Mater., 2005, 340, p 93–112

    Article  Google Scholar 

  3. G. Meetham, M. van de Voorde, L. Mishnaevsky Jr., Materials for High Temperature Engineering Applications. Appl. Mech. Rev. 2001, 54, p 19–24

    Article  Google Scholar 

  4. D.M. Dimiduk and J.H. Perepezko, Mo-Si-B Alloys: Developing a Revolutionary Turbine Engine Material, MRS Bull., 2003, 28(9), p 639–645

    Article  CAS  Google Scholar 

  5. J.H. Perepezko, R. Sakidja, K.S. Kumar, and W. Soboyejo, Ed., Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press, Boca Raton, FL, 2007

    Google Scholar 

  6. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao, A Review of Very-Hightemperature Nb-Silicide-Based Composites, Metall. Mater. Trans. A, 2003, 34, p 2043–2052

    Article  Google Scholar 

  7. R. Mitra, Mechanical Behaviour and Oxidation Resistance of Structural Silicides, Int. Mater. Rev., 2006, 51, p 13–64

    Article  CAS  Google Scholar 

  8. T. Moriyama, K. Yoshimi, M. Zhao, T. Masnou, T. Yokoyama, J. Nakamura, H. Katsui, and T. Goto, Room-Temperature Fracture Toughness of MoSiBTiC Alloys, Intermetallics, 2017, 84, p 92–102

    Article  CAS  Google Scholar 

  9. M. Zhao, S. Nakayama, T. Hatakeyama, J. Nakamura, and K. Yoshimi, Microstructure, High-Temperature Deformability and Oxidation Resistance of a Ti5Si3-Containing Multiphase MoSiBTiC Alloy, Intermetallics, 2017, 90, p 169–179

    Article  CAS  Google Scholar 

  10. Y. Yang, Y.A. Chang, L. Tan, and Y. Du, Experimental Investigation and Thermodynamic Descriptions of the Mo-Si-Ti System, Mater. Sci. Eng. A, 2003, 362, p 281

    Article  Google Scholar 

  11. Y. Yang, Y.A. Chang, L. Tan, and W. Cao, Multiphase Equilibria in the Metal-Rich Region of the Mo-Ti-Si-B System: Thermodynamic Prediction and Experimental Validation, Acta Mater., 2005, 53, p 1711–1720

    Article  CAS  Google Scholar 

  12. D. Schliephake, A. Kauffmanna, X. Conga, C. Gombolaa, M. Azim, B. Gorr, H.J. Christ, and M. Heilmaier, Constitution, Oxidation and Creep of Eutectic and Eutectoid Mo-Si-Ti Alloys, Intermetallics, 2019, 104, p 133–142

    Article  CAS  Google Scholar 

  13. M.A. Azim, D. Schliephake, C. Hochmuth, B. Gorr, H.J. Christ, U. Glatzel, and M. Heilmaier, Creep Resistance and Oxidation Behavior of Novel Mo-Si-B-Ti Alloys, JOM, 2015, 67(11), p 2621–2628

    Article  Google Scholar 

  14. S. Majumdar, B. Paul, P.K. Singh, J. Kishor, and V. Kain, Effect of Si Content on Microstructure, Mechanical and Oxidation Properties of Hot Pressed Mo-Ti-Si Alloys, Intermetallics, 2018, 100, p 126–135

    Article  CAS  Google Scholar 

  15. S. Burk, B. Gorr, H.J. Christ, and D. Schliephake, Schliephake, High-Temperature Oxidation Behaviour of a Single-Phase (Mo,Ti)5Si3 (Mo-Si-Ti) alloy, Scr Mater, 2012, 66(5), p 223–226

    Article  CAS  Google Scholar 

  16. I.V. Dulera and R.K. Sinha, Indian High Temperature Reactor Programme: An Overview, BARC Newsletter, 2010, 315, p 65–69

    Google Scholar 

  17. J. Pelleg, Time Dependent Deformation—Creep in Silicides. In: Mechanical Properties of Silicon Based Compounds: Silicides. Engineering Materials. (Springer, Cham, 2019)

    Chapter  Google Scholar 

  18. J. Xu, Z.Y. Li, X. Lu, Y. Yan, P. Munroe, and Z.H. Xie, Mechanical and Electrochemical Properties of Nanocrystalline (Mo1-xCrx)3Si Coatings: Experimental and Modelling Studies, J. Alloys Compd., 2014, 611, p 179–190

    Article  CAS  Google Scholar 

  19. A. Misra, J.J. Petrovic, and T.E. Mitchell, Microstructures and Mechanical Properties of a Mo3Si-Mo5Si3 Composite Scr, Mater., 1999, 40(2), p 191–196

    CAS  Google Scholar 

  20. I. Rosales and J.H. Schneibel, Stoichiometry and Mechanical Properties of Mo3Si, Intermetallics, 2000, 8, p 885–889

    Article  CAS  Google Scholar 

  21. D. Schliephake, The Influence of Fe on Ti-Containing Mo-Si-B Alloys: Phase Formation, Microstructure and Pressure Creep Behaviour, Karlsruhe Institute of Technology, Dissertation, 2017

  22. D.M. Shah, D. Berczik, D.L. Anton, and R. Hecht, Appraisal of Other Silicides as Structural Materials, Mater. Sci. Eng. A, 1992, 155, p 45–57

    Article  Google Scholar 

  23. R.A. Michi, G.K. Byung-Wook, K. Wooyoung, L. David, and C. Dunand, Compressive Creep Behavior of Hot-Pressed Mg1.96Al0.04Si0.97Bi0.03, Scr. Mater., 2018, 148, p 10–14

    Article  CAS  Google Scholar 

  24. K. Sadananda, C.R. Feng, R. Mitra, and S.C. Deevi, Creep and Fatigue Properties of High Temperature Silicides and Their Composites, Mater. Sci. Eng. A, 1999, 261, p 223–238

    Article  Google Scholar 

  25. Oxidation and Creep Behavior of Mo5Si3 Based Materials, Meyer, Mitch, PhD Thesis Submitted to Iowa State University, Ames Laboratory, U.S. DOE Iowa State University Ames, Iowa 50011 Date Transmitted: June 19, 1995

  26. K. Sadananda and C.R. Feng, Effect of Carbon Addition on the Creep of Molybdenum Disilicide Composites, Mater. Sci. Eng., A, 1995, 192, p 862–867

    Article  Google Scholar 

  27. R. Rosenkranz, G. Frommeyer, and W. Smarsly, Microstructures and Properties of High Melting Point Intermetallic Ti5Si3 and TiSi2 Compounds, Mater. Sci. Eng. A, 1992, 152, p 288–294

    Article  Google Scholar 

  28. B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti, Intermetallic Compounds-Principles and Practice, Chapter 26, Vol 3, R.L. Fleischer and J.H. Westbrook, Ed., Wiley, Hoboken, 2001, p 541–560

    Google Scholar 

  29. B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski, Ultrahigh-Temperature Nb-Silicide-Based Composites, MRS Bull., 2003, 28(9), p 646–653

    Article  CAS  Google Scholar 

  30. G. Hasemann, I. Bogomol, D. Schliephake, P.I. Loboda, and M. Krüger, Microstructure and Creep Properties of a Near-Eutectic Directionally Solidified Multiphase Mo-Si-B Alloy, Intermetallics, 2014, 48, p 28–33

    Article  CAS  Google Scholar 

  31. B. Paul, K. Raju, M. Vadsola, T.S.R.C. Murthy, J. Kishora, P. Arora, P. Chakraborty, K. Singh, S. Majumdar, and V. Kain, Investigations on Wear and Liquid Metal Corrosion Behavior of Aluminized IN-RAFMS, Fusion Eng. Des., 2018, 128, p 204–214

    Article  CAS  Google Scholar 

  32. G. Theiler and T. Gradt, Friction and Wear of PEEK Composites in Vacuum Environment, Wear, 2010, 269, p 278–284

    Article  CAS  Google Scholar 

  33. J. Cheng, J. Zhen, S. Zhu, J. Yang, J. Mab, W. Li, and W. Liu, Friction and Wear Behavior of Ni-Based Solid-Lubricating Composites at High Temperature in a Vacuum Environment, Mater. Des., 2017, 122, p 405–413

    Article  CAS  Google Scholar 

  34. V. Ramana Posa, A. Viswadevarayalu, and A. Reddy Somala, Fabrication of Graphene-TiO2 Nanocomposite with Improved Photocatalytic Degradation for Acid Orange 7 Dye Under Solar Light Irradiation, Bull. Mater. Sci., 2016, 39(3), p 759–767

    Article  Google Scholar 

  35. K.J. Kingma and R.J. Hemley, Raman Spectroscopic Study of Microcrystalline Silica, Am. Mineral., 1994, 79, p 269–273

    CAS  Google Scholar 

  36. W. Marscher, A Phenomenological Model of Abradable Wear in High Performance Turbomachinery, Wear, 1980, 59(1), p 191–211

    Article  Google Scholar 

  37. D. Klaffke, Fretting Wear of Ceramics, Tribol. Int., 1989, 22(2), p 89–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Dr. Rajeev Kapoor and Dr. Arnomitra Chatterjee of MMD, BARC for extending their support in carrying out creep and nanoindentation tests, respectively. Authors also wish to thank Dr. Jyoti Prakash of GAMD, BARC for extending his help in Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B., Sarkar, A., Kishor, J. et al. Studies on Creep and Wear Behavior of Mo-40Ti-10Si Alloy Prepared by Hot Pressing. J. of Materi Eng and Perform 29, 1007–1014 (2020). https://doi.org/10.1007/s11665-020-04603-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04603-5

Keywords

Navigation