Skip to main content
Log in

Investigation of the Hydrogen Embrittlement Susceptibility of AA5083-H111 and AA6082-T6 Dissimilar Friction Stir Welds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study focused on the evaluation of the hydrogen embrittlement susceptibility of dissimilar friction stir welds of AA5083-H111 and AA6082-T6 aluminum alloys. Electrochemical cathodic charging and slow strain rate tensile method were performed to investigate the embrittlement effect of diffused hydrogen cations into the polycrystalline matrices. The main embrittlement mechanisms were studied for applied current densities of 20, 50 and 80 mA/cm2 and duration of cathodic charging effect for 2 and 4 h. The slow strain rate tensile tests were performed with a strain rate of 2.4 × 10–4 s−1 in order to promote hydrogen migration effect to critical sites (deep traps). With the increment in applied current density from 20 to 80 mA/cm2, a severe reduction in ductility and a lower decrease in yield stress and ultimate tensile strength were observed. The fractured surfaces were characterized by increased volume fraction of embrittling features such as river patterns, quasi-cleavage facets and teardrop ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Chen, M. Zhao, and L. Rong, Role of γ′ Characteristic on the Hydrogen Embrittlement Susceptibility of Fe-Ni-Cr Alloys, Corros. Sci., 2015, 101, p 75–83

    CAS  Google Scholar 

  2. B. Lee and R.L. Karkkainen, Failure Investigation of Hydrogen Induced Cracking of Stabilator Skin in Jet Aircraft, Eng. Fail. Anal., 2018, 92, p 182–194

    CAS  Google Scholar 

  3. P. Cotterill, The Hydrogen Embrittlement of Metals, Prog. Mater. Sci., 1961, 9, p 205–250

    CAS  Google Scholar 

  4. G.M. Pressouyre, Trap Theory of Hydrogen Embrittlement, Acta Metal., 1979, 28, p 895–911

    Google Scholar 

  5. G.M. Pressouyre, A Classification of Hydrogen Traps in Steel, Mater. Trans. A, 1979, 10A, p 1571–1573

    CAS  Google Scholar 

  6. E.V. Chatzidouros, V.J. Papazoglou, T.E. Tsiourva, and D.I. Pantelis, Hydrogen Effect on Fracture Toughness of Pipeline Steel Welds, with In Situ Hydrogen Charging, Int. J. Hydrog. Energy, 2011, 36, p 12626–12643

    CAS  Google Scholar 

  7. R.A. Oriani and P.H. Josephic, Equilibrium Aspects of Hydrogen-Induced Cracking of Steels, Acta Metall., 1974, 22, p 1065–1074

    CAS  Google Scholar 

  8. R.A. Oriani and P.H. Josephic, Equilibrium and Kinetic Studies of Hydrogen-Assisted Cracking of Steel, Acta Metall., 1974, 25, p 979–988

    Google Scholar 

  9. H.K. Birnbaum and P. Sofronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen Related Fracture, Mater. Sci. Eng. A, 1994, 176, p 191–202

    CAS  Google Scholar 

  10. C.A. Zapffe and C.E. Sims, Hydrogen, Flakes and Shatter Cracks, Met. Alloys, 1940, 12, p 145–151

    Google Scholar 

  11. H.K. Birnbaum, M.L. Grossbeck, and M. Amano, Hydride Precipitation in Nb and Some Properties of NbH, J. Less Common Met., 1976, 49, p 357–370

    CAS  Google Scholar 

  12. S. Kumar and T.K.G. Namboodhiri, Precipitation Hardening and Hydrogen Embrittlement of Aluminum Alloy AA7020, Bull. Mater. Sci., 2011, 34, p 311–321

    CAS  Google Scholar 

  13. H. Kamoutsi, G.N. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corrosion-Induced Hydrogen Embrittlement in Aluminum Alloy 2024, Corros. Sci., 2006, 48, p 1209–1224

    CAS  Google Scholar 

  14. D.I. Pantelis, P.N. Karakizis, N.M. Daniolos, E.P. Koumoulos, and D.A. Dragatogiannis, Microstructural Study and Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H111 and AA6082-T6 Reinforced with SiC Nanoparticles, Mater. Manuf. Process., 2016, 31, p 264–274

    CAS  Google Scholar 

  15. E.P. Koumoulos, C.A. Charitidis, N.M. Daniolos, and D.I. Pantelis, Nanomechanical Properties of Friction Stir Welded AA6082-T6 Aluminum Alloy, Mater. Sci. Eng. B, 2017, 176, p 1585–1589

    Google Scholar 

  16. T. Iwaki, T. Kuriiwa, A. Kamegawa, H. Takamura, and M. Okada, Grain-Size Refinements of Cu-3 mass% Ti Alloys by HDDR Treatments in Correlating with Their Electrical and Mechanical Properties, Mater. Trans., 2009, 50, p 499–505

    CAS  Google Scholar 

  17. D.A. Dragatogiannis, E.P. Koumoulos, I.A. Kartsonakis, D.I. Pantelis, P.N. Karakizis, and C.A. Charitidis, Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced with TiC Nanoparticles, Mater. Manuf. Process., 2016, 31, p 2101–2114

    CAS  Google Scholar 

  18. C. Fuller, M. Mahoney, M. Calabrese, and L. Micona, Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Mater. Sci. Eng. A, 2010, 527, p 2233–2240

    Google Scholar 

  19. G.R. Cui, Z.Y. Ma, and S.X. Li, The Origin of Non Uniform Microstructure and Its Effects on the Mechanic Properties of a Friction Stir Processed Al-Mg Alloy, Acta Mater., 2009, 57, p 5718–5729

    CAS  Google Scholar 

  20. P. Sofronis and H.K. Birnbaum, Mechanics of the Hydrogen-Dislocation-Impurity Interactions—I. Increasing Shear Modulus, J. Mech. Phys. Solids, 1995, 43, p 49–90

    Google Scholar 

  21. A.N. Stroh, A Theory of the Fracture of Metals, Adv. Phys., 1992, 6, p 418–465

    Google Scholar 

  22. C. Zapffe and C. Sims, Hydrogen Embrittlement, Internal Stress and Defects in Steel, TMS-AIME, 1941, 145, p 225–232

    Google Scholar 

  23. D. Perez Escobar, C. Minambres, L. Duprez, K. Verbeken, and M. Verhaege, Internal and Surface Damage of Multiphase Steels and Pure Iron After Electrochemical Hydrogen Charging, Corros. Sci., 2011, 53, p 3166–3176

    CAS  Google Scholar 

  24. Y. Chen, T. Zhang, and L. Song, Hydride Formation During Cathodic Charging and Its Effect on Mechanical Properties of a High Nb Containing TiAl Alloy, Int. J. Hydrog. Energy, 2018, 43, p 8161–8169

    CAS  Google Scholar 

  25. A.R. Troiano and R.F. Hehemann, Stress Corrosion Cracking of Ferritic and Austenitic Stainless Steels, Hydrogen Embrittlement and Stress Corrosion Cracking, ASM, 1995, 14, p 231–248

    Google Scholar 

  26. H.K. Birnbaum, N. Moody, and A.W. Thompson, Hydrogen Effects on Materials Behavior, Miner. Met. Mater. Soc., 1990, 5, p 639–658

    Google Scholar 

  27. G. Bond, I.M. Robertson, and H.K. Birnbaum, Effects of Hydrogen on Deformation and Fracture Processes in High-Purity Aluminium, Acta Metall., 1988, 36, p 2193–2197

    CAS  Google Scholar 

  28. G. Bond, I.M. Robertson, and H.K. Birnbaum, The Influence of Hydrogen on Deformation and Fracture Processes in High-Strength Aluminum Alloys, Acta Metall., 1988, 35, p 2289–2296

    Google Scholar 

  29. T. Tabata and H.K. Birnbaum, Direct Observations of Hydrogen Enhanced Crack Propagation in Iron, Scr. Metall., 1984, 18, p 231–236

    CAS  Google Scholar 

  30. N. Takano, Hydrogen Diffusion and Embrittlement in 7075 Aluminum Alloy, Mater. Sci. Eng. A, 2008, 483, p 336–339

    Google Scholar 

  31. J.W. Watson, M. Meshi, and Y.Z. Shen, Effect of Cathodic Charging on the Mechanical Properties of Aluminum, Metall. Trans. A, 1988, 19, p 2299–2304

    Google Scholar 

  32. D. Nguyen, A.W. Thompson, and I.M. Bernstein, Microstructural Effects on Hydrogen Embrittlement in a High Purity 7075 Aluminum Alloy, Acta Metall., 1987, 35, p 2417–2425

    CAS  Google Scholar 

  33. J.B. Lumsden, M.W. Mahoney, C.G. Rhodes, and G.A. Pollock, Corrosion Behavior of Friction Stir Welded AA7050-t7651, Corrosion, 2003, 59, p 212–219

    CAS  Google Scholar 

  34. C. Ma, G. Kang, G. Gou, H. Chen, and X. Chen, Effect of Hydrogen Charging on the Tensile Properties of A7N01 Aluminum Alloy Friction Stir Welds, Int. J. Mod. Phys. B, 2015, 53, p 225–233

    Google Scholar 

  35. R.G. Song, W. Dietzel, B.Z. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress Corrosion Cracking and Hydrogen Embrittlement of an AL-Zn-Mg-Cu Alloy, Acta Mater., 2004, 52, p 4727–4743

    CAS  Google Scholar 

  36. A. Thakur, R. Raman, and S.N. Malhotra, Hydrogen Embrittlement Studies of Aged and Retrogressed-Reaged Al-Zn-Mg Alloys, Mater. Chem. Phys., 2007, 101, p 441–447

    CAS  Google Scholar 

  37. C. Thakur and R. Balasubramanian, Hydrogen Embrittlement of Aged and Retrogressed-Reaged AlLiCuMg Alloys, Acta Mater., 1997, 45, p 1323–1332

    CAS  Google Scholar 

  38. T.F. Klimowicz and R.M. Latanision, On the Embrittlement of Aluminum Alloys by Cathodic Hydrogen, The Role of Surface Films, Metall. Trans. A, 2003, 3, p 592–597

    Google Scholar 

  39. C.N. Panagopoulos and E.P. Georgiou, The Effect of Hydrogen Charging on the Mechanical Behaviour of 5083 Wrought Aluminum Alloy, Corros. Sci., 2007, 49, p 4443–4451

    CAS  Google Scholar 

  40. E.P. Georgiou, J.P. Celis, and C.N. Panagopoulos, The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy, Metals, 2017, 7, p 451–458

    Google Scholar 

  41. E. Pouillier, A.-F. Gourgues, D. Tanguy, and E.P. Busso, A Study of Intergranular Fracture in an Aluminium Alloy Due to Hydrogen Embrittlement, Int. J. Plast., 2012, 34, p 139–153

    CAS  Google Scholar 

  42. D.A. Hardwick, M. Taheri, Anthony W. Thompson, and I.M. Bernstein, Hydrogen Embrittlement in 2000 Series Aluminum Alloy, Metall. Trans. A, 1982, 13, p 235–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Kyriakopoulou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriakopoulou, H.P., Farantos, C.N., Vazdirvanidis, A. et al. Investigation of the Hydrogen Embrittlement Susceptibility of AA5083-H111 and AA6082-T6 Dissimilar Friction Stir Welds. J. of Materi Eng and Perform 28, 7687–7701 (2019). https://doi.org/10.1007/s11665-019-04489-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04489-y

Keywords

Navigation