Skip to main content
Log in

Influence of Single-Point Incremental Force Process Parameters on Forming Characteristics and Microstructure Evolution of AA-6061 Alloy Sheet

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Single-point incremental forming (SPIF) process comprises a set of process variables, such as forming tool diameter, vertical pitch, spindle rotation speed, and tool velocity, which may affect the forming behavior of the sheet to be deformed. The objective of this work is to study the effect of SPIF process parameters on forming characteristics and microstructure development for the AA-6061 (T6) aluminum alloy sheet. The SPIF experiments and finite element (FE) simulations were performed at different process parameters to achieve conical shapes from the AA-6061 blanks. The effect of process parameters on forming forces, thickness uniformity in wall region of the cone and surface roughness of the blank was analyzed. A detailed microstructure study was performed to analyze the effect of process variables on microstructure and texture evolution during the SPIF process. This study reveals that the process parameters are likely to influence the texture development especially at high tool diameter and vertical pitch values. Therefore, suitability and consequences of using different combinations of tool diameter and vertical pitch values are discussed for AA-6061 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Venukumar, S. Muthukumaran, S.G. Yalagi, and S.V. Kailas, Failure Modes and Fatigue Behavior of Conventional and Refilled Friction Stir Spot Welds in AA 6061-T6 Sheets, Int. J. Fatigue, 2014, 61, p 93–100

    Article  CAS  Google Scholar 

  2. M.W. Fu, Y.W. Tham, H.H. Hng, and K.B. Lim, The Grain Refinement of Al-6061 via ECAE Processing: Deformation Behavior, Microstructure and Property, Mater. Sci. Eng. A, 2009, 526(1–2), p 84–92

    Article  Google Scholar 

  3. V.K. Barnwal, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of Plastic Anisotropy on Forming Behavior of AA-6061 Aluminum Alloy Sheet, J. Strain Anal. Eng. Des., 2016, 51(7), p 507–517

    Article  Google Scholar 

  4. C.R. Brooks, ASM Handbook Heat Treating, 4, 2001.

  5. V.K. Barnwal, Forming Behavior and Microstructure Evolution during Conventional and Incremental Sheet Forming of AA-6061 Aluminum Alloy Sheet, Dissertation Indian Institute of Technology Bombay India, 2016.

  6. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann., 2005, 54(2), p 88–114

    Article  Google Scholar 

  7. A.K. Behera, R.A. De Sousa, G. Ingarao, and V. Oleksik, Single Point Incremental Forming: An Assessment of the Progress and Technology Trends from 2005 to 2015, J. Manuf. Process., 2017, 27, p 37–62

    Article  Google Scholar 

  8. V.C. Do, Q.T. Pham, and Y.S. Kim, Identification of Forming Limit Curve at Fracture in Incremental Sheet Forming, Int. J. Adv. Manuf. Technol., 2017, 92(9), p 4445–4455

    Article  Google Scholar 

  9. A. Mohammadi, L. Qin, H. Vanhove, M. Seefeldt, A. Van Bael, and J.R. Duflou, Single Point Incremental Forming of an Aged AL-Cu-Mg Alloy: influence of Pre-heat Treatment and Warm Forming, J. Mater. Eng. Perform., 2016, 25(6), p 2478–2488

    Article  CAS  Google Scholar 

  10. G. Hussain, G. Lin, N. Hayat, N.U. Dar, and A. Iqbal, New Methodologies for the Determination of Precise Forming Limit Curve in Single Point Incremental Forming Process, Adv. Mater. Res., 2010, 97–101, p 126–129

    Article  Google Scholar 

  11. C. Raju, N Halo, and C. Sathiya Narayanan, Strain Distribution and Failure Mode in Single Point Incremental Forming (SPIF) of Multiple Commercially Pure Aluminum sheets, J. Manuf. Process., 2017, 30, p 328–335.

    Article  Google Scholar 

  12. W.C. Emmens and A.H. van den Boogaard, An Overview of Stabilizing Deformation Mechanisms in Incremental Sheet Forming, J. Mater. Process. Technol., 2009, 209(8), p 3688–3695

    Article  CAS  Google Scholar 

  13. K. Jackson and J. Allwood, The Mechanics of Incremental Sheet Forming, J. Mater. Process. Technol., 2009, 209(3), p 1158–1174

    Article  CAS  Google Scholar 

  14. K. Essa and P. Hartley, An Assessment of Various Process Strategies for Improving Precision in Single Point Incremental Forming, Int. J. Mater. Form., 2010, 4(4), p 401–412

    Article  Google Scholar 

  15. J.J. Park and Y.H. Kim, Fundamental Studies on the Incremental Sheet Metal Forming Technique, J. Mater. Process. Technol., 2003, 140(1–3), p 447–453

    Article  CAS  Google Scholar 

  16. M. Durante, A. Formisano, and A. Langella, Observations on the Influence of Tool-Sheet Contact Conditions on an Incremental Forming Process, J. Mater. Eng. Perform., 2011, 20(6), p 941–946

    Article  CAS  Google Scholar 

  17. M. Durante, A. Formisano, A. Langella, and F.M.C. Minutolo, The Influence of Tool Rotation on an Incremental Forming Process, J. Mater. Process. Technol., 2009, 209(9), p 4621–4626

    Article  Google Scholar 

  18. C. Bouffioux, P. Eyckens, C. Henrard, R. Aerens, A.V. Bael, H. Sol, and A.M. Habraken, Identification of Material Parameters to Predict Single Point Incremental Forming Forces, Int. J. Mater. Form., 2008, 1(S1), p 1147–1150

    Article  Google Scholar 

  19. G. Ambrogio, L. Filice, and F. Gagliardi, Enhancing Incremental Sheet Forming Performance Using High Speed, Key Eng. Mater., 2011, 473, p 847–852

    Article  Google Scholar 

  20. M. Durante, A. Formisano, and A. Langella, Comparison Between Analytical and Experimental Roughness Values of Components Created by Incremental Forming, J. Mater. Process. Technol., 2010, 210(14), p 1934–1941

    Article  Google Scholar 

  21. G. Hussain, L. Gao, N. Hayat, Z. Cui, Y.C. Pang, and N.U. Dar, Tool and Lubrication for Negative Incremental Forming of a Commercially Pure Titanium Sheet, J. Mater. Process. Technol., 2008, 203(1–3), p 193–201

    Article  CAS  Google Scholar 

  22. C. Henrard, C. Bouffioux, P. Eyckens, J. Sol, J.R. Duflou, P.V. Houtte, A.V. Bael, L. Duchêne, and A.M. Habraken, Forming Forces in Single Point Incremental Forming: Prediction by Finite Element Simulations, Validation and Sensitivity, Comput. Mech., 2010, 47(5), p 573–590

    Article  Google Scholar 

  23. J. Jeswiet, J.R. Duflou, and A. Szekeres, Forces in Single Point and Two Point Incremental Forming, Adv. Mater. Res., 2005, 6–8, p 449–456

    Article  Google Scholar 

  24. A. Bansal, R. Lingam, S.K. Yadav, and N.V. Reddy, Prediction of Forming Forces in Single Point Incremental Forming, J. Manuf. Process., 2017, 28, p 486–493

    Article  Google Scholar 

  25. R. Aerens, P. Eyckens, A.V. Bael, and J.R. Duflou, Force Prediction for Single Point Incremental Forming Deduced from Experimental and FEM Observations, Int. J. Adv. Manuf. Technol., 2009, 46(9–12), p 969–982

    Google Scholar 

  26. V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of Microstructure and Texture on Forming Behaviour of AA-6061 Aluminium Alloy Sheet, Mater. Sci. Eng. A, 2017, 679, p 56–65

    Article  CAS  Google Scholar 

  27. V.K. Barnwal, S. Chakrabarty, A. Tewari, K. Narasimhan, and S.K. Mishra, Forming Behavior and Microstructural Evolution During Single Point Incremental Forming Process of AA-6061 Aluminum Alloy Sheet, Int. J. Adv. Manuf. Technol., 2018, 95(1–4), p 921–935

    Article  Google Scholar 

  28. P. Shrivastava and P. Tandon, Effect of Preheated Microstructure Vis-à-vis Process Parameters and Characterization of Orange Peel in Incremental Forming of AA1050 Sheets, J. Mater. Eng. and Perform., 2019, 28(5), p 2530–2542

    Article  CAS  Google Scholar 

  29. D. Banabic, Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits, Springer, 2000

  30. V.K. Barnwal, S.Y. Lee, J.H. Kim, and F. Barlat, Failure Characteristics of Advanced High Strength Steels at Macro and Micro Scales, Mat. Sci. and Eng. A, 2019, 754, p 411–427

    Article  CAS  Google Scholar 

  31. S.K. Mishra, S.S.V. Tatiparti, S.M. Tiwari, R.S. Raghavan, J.E. Carsley, and J. Li, Annealing Response of AA5182 Deformed in Plane Strain and Equibiaxial Strain Paths, Philos. Mag., 2013, 93(20), p 2613–2629

    Article  CAS  Google Scholar 

  32. R. Aerens, J.R. Duflou, P. Eyckens, and A.V. Bael, Advances in Force Modelling for SPIF, Int. J. Mater. Form., 2009, 2(S1), p 25–28

    Article  Google Scholar 

  33. G. Ambrogio, I. Costantino, L.D. Napoli, L. Filice, L. Fratini, and M. Muzzupappa, Influence of Some Relevant Process Parameters on the Dimensional Accuracy in Incremental Forming: A Numerical and Experimental Investigation, J. Mater. Process. Technol., 2004, 153–154(1–3), p 501–507

    Article  Google Scholar 

  34. E.R. Davies, Introduction to Texture Analysis. Handbook of Texture Analysis Imperial College Press, 2008.

  35. R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures, Mater. Des., 2009, 30(5), p 1804–1817

    Article  CAS  Google Scholar 

  36. Y.P. Chen, W.B. Lee, and S. To, Influence of Initial Texture on Formability of Aluminum Sheet Metal by Crystal Plasticity FE Simulation, J. Mater. Process. Technol., 2007, 192–193, p 397–403

    Article  Google Scholar 

  37. J. Hu, K. Ikeda, and T. Murakami, Effect of Texture Components on Plastic Anisotropy and Formability of Aluminium alloy Sheets, J. Mater. Process. Technol., 1998, 73, p 49–56

    Article  Google Scholar 

  38. X.Y. Wen, Z.D. Long, W.M. Yin, T. Zhai, Z. Li, and S.K. Das, Texture Evolution in Continuous Casting Aluminum alloy AA5052 Hot Band During Biaxial Stretching, Mater. Sci. Eng. A, 2007, 454, p 245–251

    Article  Google Scholar 

  39. W.C. Liu, T. Zhai, and J.G. Morris, Texture Evolution of Continuous Cast and Direct Chill Cast AA 3003 Aluminum Alloys During Cold Rolling, Scr. Mater., 2004, 51(2), p 83–88

    Article  Google Scholar 

  40. P.V. Houtte, S. Li, M. Seefeldt, and L. Delannay, Deformation Texture Prediction: From the Taylor Model to the Advanced Lamel Model, Int. J. Plast., 2005, 21, p 589–624

    Article  Google Scholar 

  41. O. Engler and J. Hirsch, Texture Control by Thermomechanical Processing of AA6xxx Al-Mg-Si Sheet Alloys for Automotive Applications—A Review, Mater. Sci. Eng. A, 2002, 336, p 249–262

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided for this work by the National Centre for Aerospace Innovation and Research, IIT Bombay, Powai, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Barnwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnwal, V.K., Chakrabarty, S., Tewari, A. et al. Influence of Single-Point Incremental Force Process Parameters on Forming Characteristics and Microstructure Evolution of AA-6061 Alloy Sheet. J. of Materi Eng and Perform 28, 7141–7154 (2019). https://doi.org/10.1007/s11665-019-04446-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04446-9

Keywords

Navigation