Skip to main content
Log in

Sensing Capability of Air Plasma-Sprayed SnO2 Coating in the Presence of Hydrogen and Carbon Monoxide

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This report deals with the sensing characteristics of hydrogen (H2) and carbon monoxide (CO) gases using a tin oxide (SnO2) functional coating deposited on an alumina plate using air plasma spraying technique. This coating exhibits a porous morphology that contains both mesoporous and macroporous regions conducive to superior gas sensing. Initially, gas sensing measurements were performed by varying the operating temperature at a fixed gas concentration using a dynamic sensing setup. The coating showed maximum response % at 275 °C for H2 and CO gases. However, higher response % was obtained in the presence of H2 over CO. Sensing performance was further investigated by varying the target gas concentration at 275 °C. The coating exhibited a higher response for H2 compared to that of other plasma-sprayed SnO2 coating reported in the literature. The SnO2 coating under investigation demonstrated good sensor response and repeatability, moderate operating temperature and quick response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Aroutiounian, Metal Oxide Hydrogen, Oxygen, and Carbon Monoxide Sensors for Hydrogen Setups and Cells, Int. J. Hydrogen Energy, 2007, 32(9), p 1145–1158

    Article  CAS  Google Scholar 

  2. S. Verhelst, Recent Progress in the Use of Hydrogen as a Fuel for Internal Combustion Engines, Int. J. Hydrogen Energy, 2014, 39(2), p 1071–1085. https://doi.org/10.1016/j.ijhydene.2013.10.102

    Article  CAS  Google Scholar 

  3. S.G. Leonardi, A. Bonavita, N. Donato, and G. Neri, Development of a Hydrogen Dual Sensor for Fuel Cell Applications, Int. J. Hydrogen Energy, 2018, 43(26), p 11896–11902. https://doi.org/10.1016/j.ijhydene.2018.02.019

    Article  CAS  Google Scholar 

  4. I. Dincer and C. Acar, Review and Evaluation of Hydrogen Production Methods for Better Sustainability, Int. J. Hydrogen Energy, 2014, 40(34), p 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  CAS  Google Scholar 

  5. K. Mukherjee and S.B. Majumder, Hydrogen Sensing Characteristics of Nano-Crystalline Mg0.5Zn0.5Fe2O4 Thin Film: Effect of Film Thickness and Operating Temperature, Int. J. Hydrogen Energy, 2014, 39(2), p 1185–1191. https://doi.org/10.1016/j.ijhydene.2013.10.158

    Article  CAS  Google Scholar 

  6. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Hydrogen Sensors: A Review, Sensors Actuators B Chem., 2011, 157(2), p 329–352

    Article  Google Scholar 

  7. J. Yanez, M. Kuznetsov, and A. Souto-Iglesias, An Analysis of the Hydrogen Explosion in the Fukushima-Daiichi Accident, Int. J. Hydrogen Energy, 2015, 40(25), p 8261–8280. https://doi.org/10.1016/j.ijhydene.2015.03.154

    Article  CAS  Google Scholar 

  8. T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.J. Shen, and S. Imamura, Catalytic Steam Reforming of Ethanol to Produce Hydrogen and Acetone, Appl. Catal. A, 2005, 279(1–2), p 273–277

    Article  CAS  Google Scholar 

  9. H. Chen and Z. Mao, The Study on the Results of Hydrogen Pipeline Leakage Accident of Different Factors, IOP Conf. Ser. Earth Environ. Sci., 2017, 64(1), p 012002

    Article  Google Scholar 

  10. K.K. Bhargav, S. Ram, and S.B. Majumder, The Role of Catalytic Cobalt-Modified Lanthanum Ferrite Nano-Crystals in Selective Sensing of Carbon Monoxide, J. Mater. Sci., 2014, 50(2), p 644–651

    Article  Google Scholar 

  11. A. Ghosh, T. Bhowmick, N. Labhasetwar, and S.B. Majumder, Catalytic Oxidation and Selective Sensing of Carbon Monoxide for Sense and Shoot Device Using ZnO–CuO Hybrids, Materialia, Elsevier Ltd, 2018, 2019(5), p 100177. https://doi.org/10.1016/j.mtla.2018.11.026

    Article  Google Scholar 

  12. G. Reumuth, Z. Alharbi, K.S. Houschyar, B.S. Kim, F. Siemers, P.C. Fuchs, and G. Grieb, Carbon Monoxide Intoxication: What We Know, Burns, 2019, 45(3), p 526–530

    Article  Google Scholar 

  13. S.C. Jambagi, S. Kar, P. Brodard, and P.P. Bandyopadhyay, Characteristics of Plasma Sprayed Coatings Produced from Carbon Nanotube Doped Ceramic Powder Feedstock, Mater. Des., 2016, 112, p 392–401. https://doi.org/10.1016/j.matdes.2016.09.095

    Article  CAS  Google Scholar 

  14. M. Hadad, P.P. Bandyopadhyay, J. Michler, and J. Lesage, Tribological Behaviour of Thermally Sprayed Ti-Cr-Si Coatings, Wear, 2009, 267(5–8), p 1002–1008

    Article  CAS  Google Scholar 

  15. P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Ceramic Coatings on Steel Substrate.”Ph.D Dissertation, Indian Institute of Technology, Kharagpur, (2000)

  16. S. Datta, D.K. Pratihar, and P.P. Bandyopadhyay, Modeling of Plasma Spray Coating Process Using Statistical Regression Analysis, Int. J. Adv. Manuf. Technol., 2013, 65(5–8), p 967–980. https://doi.org/10.1007/s00170-012-4232-y

    Article  Google Scholar 

  17. S. Kar, S. Paul, and P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Oxides: Microstructure, Phases Residual Stress Surface Coat. Technol., 2016, 304(September), p 364–374

    Article  CAS  Google Scholar 

  18. S.C. Jambagi and P.P. Bandyopadhyay, Plasma Sprayed Carbon Nanotube Reinforced Splats and Coatings, J. Eur. Ceram. Soc., 2017, 37(5), p 2235–2244. https://doi.org/10.1016/j.jeurceramsoc.2017.01.028

    Article  CAS  Google Scholar 

  19. J. Longtin, S. Sampath, R.J. Gambino, S. Tankiewicz, and R. Greenlaw, Sensors for Harsh Environments by Direct Write Thermal Spray, Proc. IEEE Sensors, 2002, 1(1), p 598–601. https://doi.org/10.1109/ICSENS.2002.1037168

    Article  CAS  Google Scholar 

  20. T.S. Theophilou, J.P. Longtin, S. Sampath, S. Tankiewicz, and R.J. Gambino, Integrated Heat-Flux Sensors for Harsh Environments Using Thermal-Spray Technology, IEEE Sens. J., 2006, 6(5), p 1126–1132

    Article  CAS  Google Scholar 

  21. A.F. Ahlström-Silversand and C.U.I. Odenbrand, Thermally Sprayed Wire-Mesh Catalysts for the Purification of Flue Gases from Small-Scale Combustion of Bio-Fuel Catalyst Preparation and Activity Studies, Appl. Catal. A, 1997, 153(1), p 177–201

    Article  Google Scholar 

  22. C. Zhang, M. Debliquy, A. Boudiba, H. Liao, and C. Coddet, Sensing Properties of Atmospheric Plasma-Sprayed WO3 Coating for Sub-Ppm NO2 Detection, Sensors Actuators B Chem., 2010, 144(1), p 280–288

    Article  CAS  Google Scholar 

  23. C. Zhang, M. Debliquy, and H. Liao, Deposition and Microstructure Characterization of Atmospheric Plasma-Sprayed ZnO Coatings for NO2 Detection, Appl. Surface Sci., 2010, 256(20), p 5905–5910. https://doi.org/10.1016/j.apsusc.2010.03.072

    Article  CAS  Google Scholar 

  24. M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, and J.M. Guilemany, New Procedures for Building-up the Active Layer of Gas Sensors on Flexible Polymers, Surf. Coat. Technol., 2013, 235, p 848–852. https://doi.org/10.1016/j.surfcoat.2013.09.011

    Article  CAS  Google Scholar 

  25. G. Korotcenkov, Handbook of Gas Sensor Materials, Prop. Adv. Short. Appl., 2014, 2, p 15. https://doi.org/10.1007/978-1-4614-7388-6

    Article  Google Scholar 

  26. V. Ambardekar, P.P. Bandyopadhyay, and S.B. Majumder, Atmospheric Plasma Sprayed SnO2 Coating for Ethanol Detection, J. Alloys Compd., 2018, 752(2), p 440–447. https://doi.org/10.1016/j.jallcom.2018.04.151

    Article  CAS  Google Scholar 

  27. V. Ambardekar, P.P. Bandyopadhyay, and S.B. Majumder, Hydrogen Sensing Performance of Atmospheric Plasma Sprayed Tin Dioxide Coating, Int. J. Hydrogen Energy, 2019, 44, p 14092–14104. https://doi.org/10.1016/j.ijhydene.2019.04.013

    Article  CAS  Google Scholar 

  28. G.J. Li, X.H. Zhang, and S. Kawi, Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors, Sensors Actuators B Chem., 1999, 60(1), p 64–70

    Article  CAS  Google Scholar 

  29. M. Gardon and J.M. Guilemany, A Review on Fabrication, Sensing Mechanisms and Performance of Metal Oxide Gas Sensors, J. Mater. Sci. Mater. Electron., 2013, 24(5), p 1410–1421

    Article  CAS  Google Scholar 

  30. K. Sabiruddin, P.P. Bandyopadhyay, G. Bolelli, and L. Lusvarghi, Variation of Splat Shape with Processing Conditions in Plasma Sprayed Alumina Coatings, J. Mater. Process. Technol., 2011, 211(3), p 450–462. https://doi.org/10.1016/j.jmatprotec.2010.10.020

    Article  CAS  Google Scholar 

  31. S. Ghosh, S. Das, T.K. Bandyopadhyay, P.P. Bandyopadhyay, and A.B. Chattopadhyay, Indentation Responses of Plasma Sprayed Ceramic Coatings, J. Mater. Sci., 2003, 38(7), p 1565–1572

    Article  CAS  Google Scholar 

  32. N. Yamazoe, G. Sakai, K. Shimanoe, N.Y.Ã.G. Sakai, and K. Shimanoe, Oxide Semiconductor Gas Sensors, Cata. Surv. Asia, 2003, 7(1), p 63–75. https://doi.org/10.1023/a:1023436725457

    Article  CAS  Google Scholar 

  33. S. Pati, P. Banerji, and S.B. Majumder, MOCVD Grown ZnO Thin Film Gas Sensors: Influence of Microstructure, Sens. Actuators, A, 2014, 2014(213), p 52–58. https://doi.org/10.1016/j.sna.2014.04.005

    Article  CAS  Google Scholar 

  34. K. Mukherjee, D.C. Bharti, and S.B. Majumder, Solution Synthesis and Kinetic Analyses of the Gas Sensing Characteristics of Magnesium Ferrite Particles, Sensors Actuators B Chem., 2010, 146(1), p 91–97. https://doi.org/10.1016/j.snb.2010.02.020

    Article  CAS  Google Scholar 

  35. A. Ghosh and S.B. Majumder, Modeling the Sensing Characteristics of Chemi-Resistive Thin Film Semi-Conducting Gas Sensors, Phys. Chem. Chem. Phys. R. Soc. Chem., 2017, 19, p 23431–23443. https://doi.org/10.1039/c7cp04241h

    Article  CAS  Google Scholar 

  36. K. Mukherjee and S.B. Majumder, Analyses of Response and Recovery Kinetics of Zinc Ferrite as Hydrogen Gas Sensor, J. Appl. Phys., 2009, 106(6), p 064912

    Article  Google Scholar 

  37. A. Maity, A. Ghosh, and S.B. Majumder, Engineered Spinel-Perovskite Composite Sensor for Selective Carbon Monoxide Gas Sensing, Sensors Actuators B Chem., 2016, 225(2), p 128–140. https://doi.org/10.1016/j.snb.2015.11.025

    Article  CAS  Google Scholar 

  38. K. Mukherjee, Gas Sensing Characteristics of Wet Chemical Sythesized Spinel Ferrites. Ph.D Dissertation, Indian Institute of Technology, Kharagpur, 2011.

  39. A. Maity and S.B. Majumder, NO2 Sensing and Selectivity Characteristics of Tungsten Oxide Thin Films, Sensors Actuators B Chem., 2015, 206(2), p 423–429. https://doi.org/10.1016/j.snb.2014.09.082

    Article  CAS  Google Scholar 

  40. H.E. Endres, H.D. Jander, and W. Göttler, A Test System for Gas Sensors, Sensors and Actuators B Chem., 1995, 23(2–3), p 163–172

    Article  CAS  Google Scholar 

  41. S. Pati, A. Maity, P. Banerji, and S.B. Majumder, Qualitative and Quantitative Differentiation of Gases Using ZnO Thin Film Gas Sensors and Pattern Recognition Analysis, The Analyst, 2014, 139(7), p 1796. https://doi.org/10.1039/c3an02021e

    Article  CAS  Google Scholar 

  42. T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, Mesoporous Materials as Gas Sensors, Chem. Soc. Rev., 2013, 42(9), p 4036–4053

    Article  CAS  Google Scholar 

  43. I. Kocemba and J. Rynkowski, The Influence of Catalytic Activity on the Response of Pt/SnO2 Gas Sensors to Carbon Monoxide and Hydrogen, Sensors and Actuators B Chem., 2011, 155(2), p 659–666. https://doi.org/10.1016/j.snb.2011.01.026

    Article  CAS  Google Scholar 

  44. Y. Shimizu, T. Maekawa, Y. Nakamura, and M. Egashira, Effects of Gas Diffusivity and Reactivity on Sensing Properties of Thick Film SnO2 -Based Sensors 1, Sensors and Actuators B Chem., 1998, 46, p 163–168

    Article  CAS  Google Scholar 

  45. A. Mirzaei, S.G. Leonardi, and G. Neri, Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review, Ceram. Int., 2016, 42(14), p 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  46. S. Pati, P. Banerji, and S.B. Majumder, N- to p- Type Carrier Reversal in Nanocrystalline Indium Doped ZnO Thin Film Gas Sensors, Int. J. Hydrogen Energy, 2014, 39(27), p 15134–15141. https://doi.org/10.1016/j.ijhydene.2014.07.075

    Article  CAS  Google Scholar 

  47. A. Ghosh and S.B. Majumder, Addressing the Selectivity Issue of Cobalt Doped Zinc Oxide Thin Film Iso-Butane Sensors: Conductance Transients and Principal Component Analyses, J. Appl. Phys., 2017, 122(3), p 034506

    Article  Google Scholar 

  48. K. Mukherjee and S.B. Majumder, Hydrogen Sensing Characteristics of Wet Chemical Synthesized Tailored Mg0.5Zn0.5Fe2O4 Nanostructures, Nanotechnology, 2010, 21(25), p 255504

    Article  CAS  Google Scholar 

  49. A. Ghosh, T. Schneller, R. Waser, and S.B. Majumder, Understanding on the Selective Carbon Monoxide Sensing Characteristics of Copper Oxide-Zinc Oxide Composite Thin Films, Sensors Actuators B Chem., 2017, 253, p 685–696. https://doi.org/10.1016/j.snb.2017.06.154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The above research work was partially supported by the research grant obtained from CSIR, Government of India; vide sanction Letter No. 03/(1371)/16/EMR-II, dated 10-05-2016 and DST, Government of India; vide sanction letter Nos. 5(1)/2017-NANO dated 28-03-2018 and DST/NM/NNETRA/2018(G)-IITKGP dated 21-03-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambardekar, V., Bandyopadhyay, P.P. & Majumder, S.B. Sensing Capability of Air Plasma-Sprayed SnO2 Coating in the Presence of Hydrogen and Carbon Monoxide. J. of Materi Eng and Perform 28, 6728–6735 (2019). https://doi.org/10.1007/s11665-019-04415-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04415-2

Keywords

Navigation