Skip to main content
Log in

CO and C3H8 sensing performance of coatings obtained from TiO2-powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different semiconductor oxides have been widely studied for gas sensing applications. In this work, titanium dioxide (TiO2) powders, synthesized by the homogeneous precipitation method, have been used to deposit thick coatings over sodalime glass sustrates by using a simple and scalable chemical method, Doctor Blade. TiO2 powders were processed via the precipitation process from both titanium isopropoxide (TTI) and titanium butoxide (TiBu), separately, as Ti precursors. For processing the TiO2, the precursors were dissolved in a mix of methanol, glacial acetic acid, and sulfuric acid; the disolution was stirried and heated at 65 °C and kept under a reflux system, resulting in a white precipitate. This precipitate was centrifuged, decanted, dried at 200 °C for 2 h, and finally calcined in air at 650 °C for 6 h. For depositing the TiO2 coatings, a paste prepared from TiO2 powders, deionized water and lactic was used. Afterwards, the coatings were dried at 45 °C for 2 h, and finally thermally treated at 400 and 450 °C for 3 h. The structure and morphology of the TiO2 powders were analyzed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively, whereas the TiO2 coatings were characterized by profilometry and Atomic Force Microscopy (AFM). The gas sensing response of the coatings was tested in both, C3H8 and CO, at different operating temperatures and gas concentrations. The sensitivity results were significant to both gases, and it was confirmed the potential application of TiO2 coatings deposited by the Doctor Blade method as gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.M. Ruiz, A. Cornet, J.R. Morante, Sens. Actuators B 100, 256 (2004)

    Article  Google Scholar 

  2. W. Göpel, K.D. Schierbaum, Sens. Actuators B 26–27, 1 (1995)

    Article  Google Scholar 

  3. Y. Li, J. Liang, Z. Tao, J. Chen, Mater. Res. Bull. 43, 2380 (2008)

    Article  Google Scholar 

  4. H. Nguyen, S.A. El-Safty, J. Phys. Chem. C 115, 8466 (2011)

    Article  Google Scholar 

  5. T. Waitz et al., Adv. Funct. Mater. 19, 653 (2009)

    Article  Google Scholar 

  6. C. Balazsi et al., Sens. Actuators B 133, 151 (2008)

    Article  Google Scholar 

  7. Z. Seeley, Y. Jin Choi, S. Bose, Sens. Actuators B 140, 98 (2009)

    Article  Google Scholar 

  8. L. Wang, Sens. Actuators B 162, 237 (2012)

    Article  Google Scholar 

  9. Y. Jin Choi et al., Sens. Actuators B 124, 111 (2007)

    Article  Google Scholar 

  10. J.W. Fergus, Sens. Actuators B 122, 683 (2007)

    Article  Google Scholar 

  11. J. Nisar et al., ACS Appl. Mater. Interfaces 5, 8516 (2013)

    Article  Google Scholar 

  12. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  Google Scholar 

  13. W. Qi Fang, X.Q. Gong, H.G. Yang, The J. Phys. Chem. Lett. 2, 725 (2011)

    Article  Google Scholar 

  14. S.A. Akbar, L.B. Younkman, J. Electrochem. Soc. 144(5), 1750 (1997)

    Article  Google Scholar 

  15. U. Kirner et al., Sens. Actuators B1, 103 (1990)

    Article  Google Scholar 

  16. B.C. Yadav, A. Yadav, T. Shukla, S. Singh, Bull. Mater. Sci. 34, 1639 (2011)

    Article  Google Scholar 

  17. J. Gong et al., J. Phys. Chem. C 114, 9970 (2010)

    Article  Google Scholar 

  18. B. Karunagaran, Mater. Charact. 58, 680 (2007)

    Article  Google Scholar 

  19. S.-J. Kim et al., J. Am. Ceram. Soc. 82, 927 (1999). [4]

    Article  Google Scholar 

  20. G.S. Devi, Sens. Actuators B 87, 122 (2002)

    Article  Google Scholar 

  21. A. Zaban, J. Phys. Chem. B 104, 4130 (2000)

    Article  Google Scholar 

  22. H.Y. Bae, G.M. Choi, Sens. and Actuators B 55, 47 (1999)

    Article  Google Scholar 

  23. C. Gea et al., Mater. Sci. Eng. B 137, 53 (2007)

    Article  Google Scholar 

  24. C. Liewhiran, S. Phanichphant, Sensors 7, 185 (2007)

    Article  Google Scholar 

  25. K.P. Gattu et al., RSC Adv. 5, 72849 (2015)

    Article  Google Scholar 

  26. G. Bailly et al., Procedia Eng. 168, 264 (2016)

    Article  Google Scholar 

  27. Printed Batteries: in Materials, Technologies and Applications, ed. by S. Lanceros-Méndez, C. M. Costa (Willey, Hoboken, 2018), p. 36

    Google Scholar 

  28. C. Xu et al., Chem. Lett. 3, 441 (1990)

    Article  Google Scholar 

  29. C. Wang et al., Sensors 10, 2088 (2010)

    Article  Google Scholar 

  30. S.R. Morrison, Sens. Actuators 2, 329 (1982)

    Article  Google Scholar 

  31. G.N. Chaudhari et al., Sens. Actuators B 115, 297 (2006)

    Article  Google Scholar 

  32. J. Zhu et al., Top. Catal. 35, 261 (2005)

    Article  Google Scholar 

  33. J. Livage, C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992)

    Article  Google Scholar 

  34. C.J Brinker, D.E. Clark, D.R. Ulrich (eds.), Better Ceramic Through Chemistry III (Materials Research Society, Pittsburgh, 1998), p. 537

    Google Scholar 

  35. S. Doeuff, M. Henry, C. Sanchez, J. Livage, J. Non-Cryst. Solids 89, 206 (1987)

    Article  Google Scholar 

  36. S. Mahshid, M. Askari, M.S. Ghamsari, J. Mater. Process. Technol. 189, 296 (2007)

    Article  Google Scholar 

  37. B.E. Yoldas, J. Mater. Sci. 21, 1087 (1986)

    Article  Google Scholar 

  38. D.S. Dhawale et al., Sens. Actuators B 147, 488 (2010)

    Article  Google Scholar 

  39. C.S. Moon et al., Sens. Actuators B 131, 556 (2008)

    Article  Google Scholar 

  40. K.R. Nemade, R.V. Barde, S.A. Waghuley, J. Taibah Univ. Sci. 10(3), 1 (2016)

    Google Scholar 

  41. P.P. Sahay, R.K. Nath, Sens. Actuators B 133, 222 (2008)

    Article  Google Scholar 

  42. A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Sens. Actuators B 141, 89 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate the technical support received from the Advanced Laboratory of Electronics Nanoscopy (LANE) from CINVESTAV (SEM analysis), M.A. Luna-Arias (electrical measurements), A. Tavira-Fuentes (X-ray characterization), and M. Avendaño (AFM characterization). J. Morales acknowledges the scholarship received from Consejo Nacional de Ciencia y Tecnología (Conacyt) as well. This work was partially supported by the project number 155996 from Conacyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. de la L. Olvera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, J., Maldonado, A. & Olvera, M.d. CO and C3H8 sensing performance of coatings obtained from TiO2-powders. J Mater Sci: Mater Electron 29, 15808–15813 (2018). https://doi.org/10.1007/s10854-018-9336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9336-1

Navigation