Skip to main content
Log in

Effect of Strain Rate on the Tensile Behavior of CoCrFeNi and CoCrFeMnNi High-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs), a novel class of metal alloys, have been receiving increasing attention from the scientific community. HEAs have the potential to be used in critical load-bearing applications in replacement of conventional alloys such as stainless steel and nickel-base superalloys. Tensile experiments at quasi-static to dynamic strain rates (10−4-103 s−1) were performed on two single-phase face-centered cubic HEAs, CoCrFeNi and CoCrFeMnNi. Electron backscatter diffraction was used to study the microstructure of the samples before the experiments, and transmission electron microscopy was performed postmortem. The dominant deformation mechanisms were dislocation slip at quasi-static strain rates with the addition of deformation nano-twins at dynamic strain rates. Ultimate dynamic tensile strength and ductility improved with the increase in strain rate, which can be attributed to the activation of deformation nano-twins in HEAs. CoCrFeNi and CoCrFeMnNi both have low stacking fault energies, which could promote twinning at high strain rates to accommodate plastic deformation. The strain rate sensitivity of the flow stress increased with increasing strain rate, beginning with negligible strain rate sensitivity in the quasi-static range to high strain rate sensitivity in the dynamic range. CoCrFeMnNi showed greater strain rate sensitivity of flow stress. CoCrFeNi, with less configurational entropy, had higher mechanical properties and strain-hardening rates compared to CoCrFeMnNi, which was attributed to the weakening effect of the addition of Mn on the solid solution hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61, p 183–202

    Article  Google Scholar 

  2. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

    Article  Google Scholar 

  3. A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78. https://doi.org/10.1016/j.intermet.2013.03.018

    Article  Google Scholar 

  4. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure Evolution and Critical Stress for Twinning in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 2016, 118, p 152–163. https://doi.org/10.1016/j.actamat.2016.07.038

    Article  Google Scholar 

  5. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 2017, 128, p 292–303. https://doi.org/10.1016/j.actamat.2017.02.036

    Article  Google Scholar 

  6. W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, and J. Jiang, Strain-Rate Effect upon the Tensile Behavior of CoCrFeNi High-Entropy Alloys, Mater. Sci. Eng. A, 2017, 689, p 366–369

    Article  Google Scholar 

  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158

    Article  Google Scholar 

  8. J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24(10), p 3685–3698. https://doi.org/10.1007/s11665-015-1679-7

    Article  Google Scholar 

  9. G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339

    Article  Google Scholar 

  10. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602

    Article  Google Scholar 

  11. J.W.-W. Yeh, S.-K.K. Chen, S.-J.J. Lin, J.-Y.Y. Gan, T.S.-S. Chin, T.-T.T. Shun, C.-H.H. Tsau, and S.Y.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  12. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  13. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys, Acta Mater., 2012, 60(16), p 5723–5734. https://doi.org/10.1016/j.actamat.2012.06.046

    Article  Google Scholar 

  14. H.Y. Diao, R. Feng, K.A. Dahmen, and P.K. Liaw, Fundamental Deformation Behavior in High-Entropy Alloys: An Overview, Curr. Opin. Solid State Mater. Sci., 2017, 21(5), p 252–266. https://doi.org/10.1016/j.cossms.2017.08.003

    Article  Google Scholar 

  15. E. Eshed, N. Larianovsky, A. Kovalevsky, and A. Katz Demyanetz, Effect of Zr on the Microstructure of Second- and Third-Generation BCC HEAs, JOM, 2019, 71(2), p 673–682. https://doi.org/10.1007/s11837-018-3198-0

    Article  Google Scholar 

  16. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a Twinning-Induced Plasticity High Entropy Alloy, Acta Mater., 2015, 94, p 124–133. https://doi.org/10.1016/j.actamat.2015.04.014

    Article  Google Scholar 

  17. F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61, p 2628–2638

    Article  Google Scholar 

  18. N.G. Jones, J.W. Aveson, A. Bhowmik, B.D. Conduit, and H.J. Stone, On the Entropic Stabilisation of an Al0.5CrFeCoNiCu High Entropy Alloy, Intermetallics, 2014, 54, p 148–153

    Article  Google Scholar 

  19. P.D. Jablonski, J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of High Entropy Alloys, JOM, 2015, 67(10), p 2278–2287. https://doi.org/10.1007/s11837-015-1540-3

    Article  Google Scholar 

  20. L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Slip Nucleation in Single Crystal FeNiCoCrMn High Entropy Alloy, Scr. Mater., 2016, 112, p 54–57. https://doi.org/10.1016/j.scriptamat.2015.09.009

    Article  Google Scholar 

  21. W. Abuzaid and H. Sehitoglu, Critical Resolved Shear Stress for Slip and Twin Nucleation in Single Crystalline FeNiCoCrMn High Entropy Alloy, Mater. Charact., 2017, 129, p 288–299

    Article  Google Scholar 

  22. Z.Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z.Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie, Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi, Nat. Commun., 2015, 6(1), p 10143. https://doi.org/10.1038/ncomms10143

    Article  Google Scholar 

  23. S.Y. Lee, S.I. Lee, and B. Hwang, Effect of Strain Rate on Tensile and Serration Behaviors of an Austenitic Fe-22Mn-0.7C Twinning-Induced Plasticity Steel, Mater. Sci. Eng. A, 2018, 711, p 22–28

    Article  Google Scholar 

  24. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions, Mater. Sci. Eng. A, 2009, 500, p 196–206

    Article  Google Scholar 

  25. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168

    Article  Google Scholar 

  26. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Revealing the Strain-Hardening Behavior of Twinning-Induced Plasticity Steels: Theory, Simul. Exp. Acta Mater., 2013, 61(2), p 494–510

    Article  Google Scholar 

  27. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359

    Article  Google Scholar 

  28. B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25(7), p 2985–2992

    Article  Google Scholar 

  29. J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, and H.S. Kim, Strain Rate Effects of Dynamic Compressive Deformation on Mechanical Properties and Microstructure of CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2018, 719, p 155–163

    Article  Google Scholar 

  30. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994

    Book  Google Scholar 

  31. G.T. Gray, Classic Split-Hopkinson Pressure Bar Testing, in ASM Handbook Vol. 8: Mechanical Testing and Evaluation, 2000

  32. K.T. Ramesh, Chapter 33. High Strain Rate and Impact Experiments, in Springer Handbook of Experimental Solid Mechanics, 2008

  33. W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Springer, New York, 2011

    Book  Google Scholar 

  34. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c. Crystals, Acta Mater., 1997, 45, p 2633–2638

    Article  Google Scholar 

  35. R.L. Fullman and J.C. Fisher, Formation of Annealing Twins during Grain Growth, J. Appl. Phys., 1951, 21, p 1350–1355

    Article  Google Scholar 

  36. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1996

    Google Scholar 

  37. M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw, Anomalies in the Deformation Mechanism and Kinetics of Coarse-Grained High Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 256–263

    Article  Google Scholar 

  38. J. Moon, S.I. Hong, J.W. Bae, M.J. Jang, D. Yim, and H.S. Kim, On the Strain Rate-Dependent Deformation Mechanism of CoCrFeMnNi High-Entropy Alloy at Liquid Nitrogen Temperature, Mater. Res. Lett., 2017, 5, p 427–477

    Article  Google Scholar 

  39. D.M. Bruce, D.K. Matlock, J.G. Speer, and A.K. De, Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels, SAE Technical Paper, 2004

  40. J.D. Campbell and W.G. Ferguson, The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Philos. Mag., 1970, 21, p 63–82

    Article  Google Scholar 

  41. B.L. Boyce and M.F. Dilmore, The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1, Int. J. Impact Eng., 2009, 36, p 263–271

    Article  Google Scholar 

  42. N. Tsuchida, Y. Izaki, T. Tanaka, and K. Fukaura, Effects of Temperature and Strain Rate on Stress-Strain Curves for Dual-Phase Steels and Their Calculations by Using the Kocks–Mecking Model, ISIJ Int., 2011, 97, p 201–208

    Google Scholar 

  43. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538

    Article  Google Scholar 

  44. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and v on Structure and Mechanical Properties of High-Entropy Alloys Based on CoCrFeNi System, J. Alloys Compd., 2014, 591, p 11–21

    Article  Google Scholar 

  45. N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, Atomic Displacement in the CrMnFeCoNi High-Entropy Alloy—A Scaling Factor to Predict Solid Solution Strengthening, AIP Adv., 2016, 6, p 125008-(1-8)

    Article  Google Scholar 

  46. S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim, Tensile Deformation Behavior and Deformation Twinning of an Equimolar CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 689, p 122–133

    Article  Google Scholar 

  47. S.R. Kalidindi, A.A. Salem, and R.D. Doherty, Role of Deformation Twinning on Strain Hardening in Cubic and Hexagonal Polycrystalline Metals, Adv. Eng. Mater., 2003, 5, p 229–232

    Article  Google Scholar 

  48. Z.S.S. Basinski, M.S.S. Szczerba, M. Niewczas, J.D.D. Embury, and S.J.J. Basinski, Transformation of Slip Dislocations during Twinning of Copper-Aluminum Alloy Crystals, Rev. Metall. Cah. D’Inf. Tech., 1997, 94, p 1037–1043

    Google Scholar 

  49. M. Beyramali Kivy and M. Asle Zaeem, Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of CoCrFeNi-Based Face-Centered Cubic High Entropy Alloys, Scr. Mater., 2017, 139, p 83–86. https://doi.org/10.1016/j.scriptamat.2017.06.014

    Article  Google Scholar 

  50. Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai, Probing Deformation Mechanisms of a FeCoCrNi High-Entropy Alloy at 293 and 77 K Using in Situ Neutron Diffraction, Acta Mater., 2018, 154, p 79–89

    Article  Google Scholar 

  51. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  52. Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, and M.A. Meyers, Adiabatic Shear Localization in the CrMnFeCoNi High-Entropy Alloy, Acta Mater., 2018, 151, p 424–431

    Article  Google Scholar 

  53. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater., 2014, 81, p 428–441

    Article  Google Scholar 

  54. W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.-J. Lee, Understanding the Physical Metallurgy of the CoCrFeMnNi High-Entropy Alloy: An Atomistic Simulation Study, npj Comput. Mater., 2018, 4(1), p 1. https://doi.org/10.1038/s41524-017-0060-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NETL for preparing and supplying the high-entropy alloys and Clemson University AMRL facility for assistance with microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett J. Pataky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, M., Indeck, J., Hazeli, K. et al. Effect of Strain Rate on the Tensile Behavior of CoCrFeNi and CoCrFeMnNi High-Entropy Alloys. J. of Materi Eng and Perform 28, 4348–4356 (2019). https://doi.org/10.1007/s11665-019-04176-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04176-y

Keywords

Navigation