Skip to main content
Log in

Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Crack length (mm)

a 0 :

Intrinsic crack length (mm)

a c :

Critical crack length at fracture

a e :

Effective crack length (mm)

a i :

Crack length increment (mm)

a ini :

Initial crack length (mm)

b :

Basquin law exponent

c :

Notch depth (mm)

d :

Nominal diameter or diameter of steel core (mm)

d 2 :

Pitch diameter (mm)

r e :

Effective radius (mm)

k t :

Theoretical stress concentration factor

l c :

Distance between cracks in coating (mm)

n, p, q :

Stage-1, Stage-2 and Stage-3 growth exponents

n x , n y :

Number of divisions in x-direction and y-direction, respectively

r :

Notch root radius (mm)

t c :

Coating thickness (mm)

x, y :

Cartesian coordinates in the crack plane (mm)

A eff :

Effective cross-sectional area (mm2)

C th, C :

Stage-1 and Stage-2 growth parameter

\(\hat{C}\) :

Basquin law parameter

E c :

Elastic modulus of zinc coating (MPa)

E s :

Elastic modulus of steel (substrate) MPa

F a :

Load amplitude (kN)

F m :

Mean load (kN)

G max, G c :

Maximum Mode-1 SERR at peak load or critical SERR release rate (J/mm2)

K c :

Fracture toughness of steel material (MPa \(\sqrt {\text{mm}}\))

K max :

Maximum stress intensity factor at peak load (MPa \(\sqrt {\text{mm}}\))

K op :

Opening stress intensity factor (MPa \(\sqrt {\text{mm}}\))

L :

Length (mm)

N, N tot :

Number of cycles, number of cycles to failure

R :

Load ratio/R-ratio

T :

Ambient temperature (K)

T sol :

Solidification temperature of coating (K)

X, Y, Z :

Cartesian coordinates in the sample coordinate system (mm)

Α :

Constraint factor α = 1 for plane stress or crack closure parameter or tensile stress concentration pre-factor α = 2

α c :

Linear coefficient of thermal expansion of coating (K−1)

α s :

Linear coefficient of thermal expansion of substrate (K−1)

ε ij :

Green strain tensor

δ ij :

Kronecker delta

α :

Incremental crack spacing or fracture quantum (m)

σ :

Stress range (MPa)

σ e :

Endurance limit range (MPa)

K :

Stress intensity factor range (MPa \(\sqrt {\text{mm}}\))

K 1 :

Stress intensity factor threshold range for R = 1 (MPa \(\sqrt {\text{mm}}\))

K th :

Stress intensity factor threshold range for R ≥ 0 (MPa \(\sqrt {\text{mm}}\))

ν :

Poisson’s ratio

σ 0 :

Flow stress of parent material (MPa)

σ a :

Nominal stress amplitude (MPa)

σ e :

Endurance limit amplitude (MPa)

σ m :

Nominal mean stress (MPa)

σ max :

Maximum nominal stress level (MPa)

σ min :

Minimum nominal stress level (MPa)

σ u :

Nominal ultimate tensile strength (MPa)

σ y :

Nominal yield strength (MPa)

σ T :

Maximum thermal equi-biaxial stress in coating (MPa)

References

  1. Y. Bergengren and A. Melander, An Experimental and Theoretical-Study of the Fatigue Properties of Hot-Dip-Galvanized High-Strength Sheet Steel, Int. J. Fatigue, 1992, 14, p 154–162

    Article  Google Scholar 

  2. T. Nilsson, G. Engberg, and H. Trogen, Fatigue Properties of Hot-Dip Galvanised Steels, Scand. J. Metall., 1989, 18, p 166–175

    Google Scholar 

  3. M. Oechsner, J. Beyer, F. Simonsen, P. Schaumann, and R. Eichstädt, Experimental and Analytical Assessment of the Fatigue Strength of Bolts with Large Dimensions Under Consideration of Boundary Layer Effects, in METEC & 2nd European Steel Technology and Application Days (Düsseldorf, Germany) 2015, p 1–6.

  4. P. Schaumann and R. Eichstädt, Fatigue Assessment of High-Strength Bolts with Very Large Diameters in Substructures for Offshore Wind Turbines, in Proceedings of the 25th International Ocean and Polar Engineering Conference (ISOPE, Hawaii, USA) 2015, p 260–267.

  5. P. Schaumann and R. Eichstädt, Ermüdung sehr großer HV-Schraubengarnituren, Stahlbau, 2016, 85, p 604–611 (in German)

    Article  Google Scholar 

  6. DIN, Eurocode 3: Design of steel structures—Part 1-9: Fatigue, Standard, German version, DIN Deutsches Institut fu¨r Normung e.V. (Berlin, Germany, 2005 in German).

  7. R. Schneider, Örtliche, Bewertung der Schwingfestigkeit von Gewindeverbindungen, Darmstadt Technische Universitat, Ph.D. thesis (2010 in German).

  8. CEN, Eurocode 3: Design of steel structures—Part 1-8: Design of joints, Standard, European Committee for Standardization, Management Centre (Brussels, Belgium) 2005.

  9. CEN, High-strength structural bolting assemblies for preloading. System HRC. Bolt and nut assemblies with calibrated preload, Standard, BSI: FME/9 (London, UK) 2009.

  10. Dassault Systèmes, Abaqus Analysis user’s manual, Vol. 6.16, 2016.

  11. Dassault Systèmes, SolidWorks 3D mechanical CAD software, Reference Guide, 2016.

  12. R. Krueger, Virtual Crack Closure Technique: History, Approach, and Applications, Appl. Mech. Rev., 2004, 57, p 109–143

    Article  Google Scholar 

  13. NASA Johnson space center and southwest research institute, NASGRO Fracture mechanics and fatigue crack growth analysis software 4.0 Manual, 2002.

  14. R.G. Forman and S.R. Mettu, Behavior of surface and corner cracks subjected to tensile and bending loads in a Ti-6Al-4V alloy, Technical Report NASA-TM-102165, NASA Johnson Space Center (Houston, USA) 1990.

  15. J. Newman, A Crack Opening Stress Equation for Fatigue Crack-Growth, Int. J. Fracture, 1984, 24, p 131–135

    Article  Google Scholar 

  16. R. Forman, V. Shivakumar, J. Cardinal, L. Williams, and P. McKeighan, Fatigue crack growth database for damage tolerance analysis, Technical Report DOT/FAA/AR-05/15, NASA Johnson Space Center (Houston, USA) 2005.

  17. The MathWorks, Inc., MATLAB and Statistics Toolbox Release 2015a (Natick, USA) 2014.

  18. G. Reumont, J.B. Vogt, A. Iost, and J. Foct, The Effects of an Fe-Zn Intermetallic-Containing Coating on the Stress Corrosion Cracking Behavior of a Hot-Dip Galvanized Steel, Surf. Coat. Technol., 2001, 139, p 265–271

    Article  Google Scholar 

  19. J. Hutchinson and Z. Suo, Mixed-Mode Cracking In Layered Materials, Adv. Appl. Mech., 1992, 29, p 63–191

    Article  Google Scholar 

  20. M. Thouless, Crack Spacing in Brittle Films on Elastic Substrates, J. Am. Ceram. Soc., 1990, 73, p 2144–2146

    Article  Google Scholar 

  21. M. Thouless, E. Olsson, and A. Gupta, Cracking of Brittle Films on Elastic Substrates, Acta Metall. Mater., 1992, 40, p 1287–1292

    Article  Google Scholar 

  22. Z. Xia and J. Hutchinson, Crack Patterns in Thin Films, J. Mech. Phys. Solids, 2000, 48, p 1107–1131

    Article  Google Scholar 

  23. J. Beuth, Cracking of Thin Bonded Films in Residual Tension, Int. J. Solids Struct., 1992, 29, p 1657–1675

    Article  Google Scholar 

  24. H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineers, New York, 2000

    Book  Google Scholar 

  25. N. Pugno and R. Ruoff, Quantized Fracture Mechanics, Phil. Mag., 2004, 84, p 2829–2845

    Article  Google Scholar 

  26. N. Pugno, M. Ciavarella, P. Cornetti, and A. Carpinteri, A generalized Paris’ Law for Fatigue Crack Growth, J. Mech. Phys. Solids, 2006, 54, p 1333–1349

    Article  Google Scholar 

  27. M. Ashby, H. Shercliff, and D. Cebon, Materials: Engineering, Science, Processing and Design, Elsevier, Amsterdam, 2014

    Google Scholar 

  28. O. Basquin, The Exponential law of Endurance Tests, ASTM, 1910, 10, p 625–630

    Google Scholar 

  29. J. Dundurs, Discussion: Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading, J. Appl. Mech., 1969, 36, p 650–652

    Article  Google Scholar 

  30. Z.B. Zhang, O.V. Mishin, N.R. Tao, and W. Pantleon, Microstructure and Annealing Behavior of a Modified 9Cr-1Mo Steel After Dynamic Plastic Deformation to Different Strains, J. Nucl. Mater., 2015, 458, p 64–69

    Article  Google Scholar 

  31. Z.B. Zhang, Y.B. Zhang, O.V. Mishin, N.R. Tao, W. Pantleon, and D. Juul Jensen, Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate, Metall. Mater. Trans. A, 2016, 47, p 4682–4693

    Article  Google Scholar 

  32. M.F. Garwood, H.H. Zurburg, and M.A. Erickson, Correlation of Laboratory Tests and Service Performance: Interpretation of Tests and Correlation with Service, American Society for Metals, Cleveland, 1951

    Google Scholar 

  33. D. Tullock, I. Reimanis, A. Graham, and J. Petrovic, Deflection and Penetration of Cracks at an Interface Between 2 Dissimilar Materials, Acta Metall. Mater., 1994, 42, p 3245–3252

    Article  Google Scholar 

  34. A. Dimatteo, G. Lovicu, M. Desanctis, R. Valentini, and M. Salvati, Influence of Galvanizing Process on Fatigue Resistance of Microalloyed Steels, Convegno Nazionale IGF XXI, (Cassino, Italy) 2011, p 283–291.

  35. P.P. Milella, Fatigue and Corrosion in Metals, Springer, Milan, 2013

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Wind Energy within the cross-sectional activity program. The authors acknowledge H.L. Toftegaard, J. Sjølin and L. Lorentzen for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eder, M.A., Haselbach, P.U. & Mishin, O.V. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples. J. of Materi Eng and Perform 27, 3184–3198 (2018). https://doi.org/10.1007/s11665-018-3399-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3399-2

Keywords

Navigation