Skip to main content

Advertisement

Log in

The Effect of Hydroxyapatite Coatings on the Passivation Behavior of Oxidized and Unoxidized Superelastic Nitinol Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nitinol alloys have been used in various biological applications due to their superior properties. In this study, a bipolar pulsed current electrodeposition technique was applied to produce a hydroxyapatite (HA) film on the Nitinol alloy. Also, the protection performance of the coating was evaluated on both abraded and thermochemically modified alloy. According to obtained data, reducing the electrocrystallization rate by the pulse deposition technique can promote HA formation on both abraded and modified substrates. Based on scanning electron microscopy and high-resolution transmission electron microscopy data, the HA coatings revealed a flake-like morphology and each flake was composed of nano-crystalline grains. Atomic force microscopy images revealed that flakes on the abraded substrate were smaller in size than that of the modified alloy. Comparing the corrosion resistance of the bare substrates revealed that the modified alloy has a higher corrosion resistance than the abraded alloy and the modified surface is well passivized during anodic polarization in Ringer’s solution. However, this condition is reversed after the deposition of HA film. It seems that because of the lower crystallization sites on the abraded alloy, the produced HA film is denser and more protective against the corrosive mediums as compared to the coating on the modified alloy. Although the HA coating can improve the bioactivity of both substrates, the resulted film on the oxidized alloy is porous and deteriorates the implant permanence in the vicinity of body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.L. Hao, Z.B. Zhang, S.J. Li, and R. Yang, Microstructure and Mechanical Behavior of a Ti-24Nb-4Zr-8Sn Alloy Processed by Warm Swaging and Warm Rolling, Acta Mater., 2012, 60, p 2169–2177

    Article  Google Scholar 

  2. B. Vrancken, L. Thijs, J.P. Kruth, and J. Van Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158

    Article  Google Scholar 

  3. H. Tian, D. Schryvers, D. Liu, Q. Jiang, and J.V. Humbeeck, Stability of Ni in Nitinol Oxide Surfaces, Acta Biomater., 2011, 7, p 892–899

    Article  Google Scholar 

  4. E. Espinar, J.M. Llamas, A. Michiardi, M.P. Ginebra, and F.J. Gil, Reduction of Ni Release and Improvement of the Friction Behaviour of NiTi Orthodontic Archwires by Oxidation Treatments, J. Mater. Sci. Mater. Med., 2011, 22, p 1119–1125

    Article  Google Scholar 

  5. K. McNamara, O. Kolaj-Robin, S. Belochapkine, F. Laffir, A.A. Gandhi, and S.A.M. Tofail, Surface Chemistry and Cytotoxicity of Reactively Sputtered Tantalum Oxide Films on NiTi Plates, Thin Solid Films, 2015, 589, p 1–7

    Article  Google Scholar 

  6. A.R. Pelton, D. Stockel, and T.W. Duerig, Medical Uses of Nitinol, Mater. Sci. Forum, 2000, 327, p 63–70

    Article  Google Scholar 

  7. M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants, Prog. Mater Sci., 2012, 57, p 911–946

    Article  Google Scholar 

  8. M. Kaneto, Y. Namura, T. Tamura, N. Shimizu, Y. Tsutsumi, T. Hanawa, and T. Yoneyama, Influence of Electrolytic Treatment Time on the Corrosion Resistance of Ni-Ti Orthodontic Wire, Dent. Mater. J., 2013, 32, p 305–310

    Article  Google Scholar 

  9. H. Wang, F. Liu, Y. Zhang, and F. Wang, Structure, Corrosion Resistance and Apatite Forming Ability of NiTi Alloy Treated by Micro-arc Oxidation in Concentrated H2SO4, Surf. Coat. Technol., 2012, 206, p 4054–4059

    Article  Google Scholar 

  10. Z. Yang, X. Wei, W. Gao, and P. Cao, Anodization of NiTi Alloy in an Ethylene Glycol Electrolyte, Surf. Coat. Technol., 2014, 252, p 142–147

    Article  Google Scholar 

  11. B. Yuan, H. Li, Y. Gao, C.Y. Chung, and M. Zhu, Passivation and oxygen Ion Implantation Double Surface Treatment on Porous NiTi Shape Memory Alloys and Its Ni Suppression Performance, Surf. Coat. Technol., 2009, 204, p 58–63

    Article  Google Scholar 

  12. Z. Huan, L.E. Fratila-Apachitei, I. Apachitei, and J. Duszczyk, Effect of Aging Treatment on the In Vitro Nickel Release from Porous Oxide Layers on NiTi, Appl. Surf. Sci., 2013, 274, p 266–272

    Article  Google Scholar 

  13. T. Fu, Y. Shen, Z. Alajmi, Y. Wang, S. Yang, and G. Li, Sol–gel Derived Ag-Containing TiO2 Films on Surface Roughened Biomedical NiTi Alloy, Ceram. Int., 2014, 40, p 12423–12429

    Article  Google Scholar 

  14. J. Katic, M. Metikos-Hukovic, and R. Babic, Synthesis and Characterization of Calcium Phosphate Coatings on Nitinol, J. Appl. Electrochem., 2014, 44, p 87–96

    Article  Google Scholar 

  15. X.J. Yang, C.Y. Liang, Y.L. Cai, K. Hu, Q. Wei, and Z.D. Cui, Recombinant Human-Like Collagen Modulated the Growth of Nano-hydroxyapatite on NiTi Alloy, Mater. Sci. Eng. C, 2009, 29, p 25–28

    Article  Google Scholar 

  16. J. Katic, M. Metikos-Hukovi, S.D. Skapin, M. Petravic, and M. Varasanec, The Potential-Assisted Deposition as Valuable Tool for Producing Functional Apatite Coatings on Metallic Materials, Electrochim. Acta, 2014, 127, p 173–179

    Article  Google Scholar 

  17. D. Arcos and M. Vallet-Regí, Bioceramics for Drug Delivery, Acta Mater., 2013, 61, p 890–911

    Article  Google Scholar 

  18. B. Aksakal, M. Gavgali, and B. Dikici, The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants, J. Mater. Eng. Perform., 2010, 19, p 894–899

    Article  Google Scholar 

  19. A.C.W. Noorakma, H. Zuhailawati, V. Aishvarya, and B.K. Dhindaw, Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies, J. Mater. Eng. Perform., 2013, 22, p 2997–3004

    Article  Google Scholar 

  20. E. Karimi, J. Khalil-Allafi, and V. Khalili, Electrophoretic Deposition of Double-Layer HA/Al Composite Coating on NiTi, Mater. Sci. Eng. C, 2016, 58, p 882–890

    Article  Google Scholar 

  21. D. Gopi, J. Indira, and L. Kavitha, A Comparative Study on the Direct and Pulsed Current Electrodeposition of Hydroxyapatite Coatings on Surgical Grade Stainless Steel, Surf. Coat. Technol., 2012, 206, p 2859–2869

    Article  Google Scholar 

  22. H. Kheimehsari, S. Izman, and M. Rezazadeh Shirdar, Effects of HA-Coating on the Surface Morphology and Corrosion Behavior of a Co-Cr-Based Implant in Different Conditions, J. Mater. Eng. Perform., 2015, 24, p 2294–2302

    Article  Google Scholar 

  23. J. Forsgren, F. Svahn, T. Jarmar, and H. Engqvist, Formation and Adhesion of Biomimetic Hydroxyapatite Deposited on Titanium Substrates, Acta Biomater., 2007, 3, p 980–984

    Article  Google Scholar 

  24. N. Cinca, A.M. Vilardell, S. Dosta, A. Concustell, I. Garcia Cano, J.M. Guilemany, S. Estradé, A. Ruiz, and F. Peiró, A New Alternative for Obtaining Nanocrystalline Bioactive Coatings: Study of Hydroxyapatite Deposition Mechanisms by Cold Gas Spraying, J. Am. Ceram. Soc., 2016, 99(4), p 1420–1428

    Article  Google Scholar 

  25. M.R. Etminanfar and J. Khalil-Allafi, On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods, J. Mater. Eng. Perform., 2016, 25, p 466–473

    Article  Google Scholar 

  26. D. Qiu, A. Wang, and Y. Yin, Characterization and Corrosion Behavior of Hydroxyapatite/Zirconia Composite Coating on NiTi Fabricated by Electrochemical Deposition, Appl. Surf. Sci., 2010, 257, p 1774–1778

    Article  Google Scholar 

  27. J. Izquierdo, G. Bolat, N. Cimpoesu, L.C. Trinca, D. Mareci, and R.M. Souto, Electrochemical Characterization of Pulsed Layer Deposited Hydroxyapatite-Zirconia Layers on Ti-21Nb-15Ta-6Zr Alloy for Biomedical Application, Appl. Surf. Sci., 2016, 385, p 368–378

    Article  Google Scholar 

  28. M. Torabi and S.K. Sadrnezhaad, Corrosion Behavior of Polypyrrole/Hydroxyapatite Nanocomposite Thin Films Electropolymerized on NiTi Substrates in Simulated Body Fluid, Mater. Corros., 2011, 62, p 252–257

    Article  Google Scholar 

  29. L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, and N. Bocchi, Influence of Hydroxyapatite on the Corrosion Resistance of the Ti-13Nb-13Zr Alloy, J. Mater. Sci. Mater. Med., 2009, 20, p 1009–1015

    Article  Google Scholar 

  30. W.T. Zheng, P.J. Cao, J.J. Li, X. Wang, and Z.S. Jin, Chemical Bonding of CN Films Synthesized by Nitrogen Ion Implantation into Diamond and Graphite, Surf. Coat. Technol., 2003, 173, p 213–218

    Article  Google Scholar 

  31. S.A. Shabalovskaya, H. Tian, J.W. Anderegg, D.U. Schryvers, W.U. Carroll, and J.V. Humbeeck, The Influence of Surface Oxides on the Distribution and Release of Nickel from Nitinol Wires, Biomaterials, 2009, 30, p 468–477

    Article  Google Scholar 

  32. Y.H. Wang, M.R. Moitreyee, R. Kumar, L. Shen, K.Y. Zeng, J.W. Chai, and J.S. Pan, A Comparative Study of Low Dielectric Constant Barrier Layer, Etch Stop and Hardmask Films of Hydrogenated Amorphous Si-(C, O, N), Thin Solid Films, 2004, 460, p 211–216

    Article  Google Scholar 

  33. C. Srisang, P. Asanithi, K. Siangchaew, A. Pokaipisit, and P. Limsuwan, Characterization of SiC in DLC/a-Si Films Prepared by Pulsed Filtered Cathodic Arc Using Raman Spectroscopy and XPS, Appl. Surf. Sci., 2012, 258, p 5605–5609

    Article  Google Scholar 

  34. M.R. Etminanfar, J. Khalil-Allafi, A. Montaseri, and R. Vatankhah-Barenji, Endothelialization and the Bioactivity of Ca-P Coatings of Different Ca/P Stoichiometry Electrodeposited on the Nitinol Superelastic Alloy, Mater. Sci. Eng. C, 2016, 62, p 28–35

    Article  Google Scholar 

  35. Y. Yan, X. Zhang, H. Mao, Y. Huang, Q. Ding, and X. Pang, Hydroxyapatite/Gelatin Functionalized Graphene Oxide Composite Coatings Deposited on TiO2 Nanotube by Electrochemical Deposition for Biomedical Applications, Appl. Surf. Sci., 2015, 329, p 76–82

    Article  Google Scholar 

  36. D.T.M. Thanh, P.T. Nam, N.T. Phuong, L.X. Que, N.V. Anh, T. Hoang, and T.D. Lam, Controlling the Electrodeposition, Morphology and Structure of Hydroxyapatite Coating on 316L Stainless Steel, Mater. Sci. Eng. C, 2013, 33, p 2037–2045

    Article  Google Scholar 

  37. N. Sahai and J.A. Tossell, Molecular Orbital Study of Apatite (Ca5(PO4)3OH) Nucleation at Silica Bioceramic Surfaces, J. Phys. Chem. B., 2000, 104, p 4322–4341

    Article  Google Scholar 

  38. M. Shirkhanzadeh, Direct Formation of Nanophase Hydroxyapatite on Cathodically Polarized Electrodes, J. Mater. Sci. Mater. Med., 1998, 9, p 67–72

    Article  Google Scholar 

  39. D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205–3213

    Article  Google Scholar 

  40. S. Liu, B. Li, C. Liang, and H. Qiao, Formation Mechanism and Adhesive Strength of a Hydroxyapatite/TiO2 Composite Coating on a Titanium Surface Prepared by Micro-arc Oxidation, Appl. Surf. Sci., 2016, 362, p 109–114

    Article  Google Scholar 

  41. M.R. Etminanfar, J. Khalil-Allafi, and A.B. Parsa, On the Electrocrystallization of Pure Hydroxyapatite Nanowalls on Nitinol Alloy Using a Bipolar Pulsed Current, J. Alloys Compd., 2016, 678, p 549–555

    Article  Google Scholar 

  42. M. Chembath, J.N. Balaraju, and M. Sujata, Effect of Anodization and Annealing on Corrosion and Biocompatibility of NiTi Alloy, Surf. Coat. Technol., 2016, 302, p 302–309

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Iran National Science Foundation (INSF) under the Contract No. 92004023. Also, the authors would like to acknowledge Prof. Ö. Dag from Bilkent University, Turkey for the use of facilities and valuable discussions on ATR-FTIR data and Prof. G. Eggeler and Dr. A. B. Parsa from Ruhr-University Bochum, Germany for TEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Etminanfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etminanfar, M.R., Khalil-Allafi, J. & Sheykholeslami, S.O.R. The Effect of Hydroxyapatite Coatings on the Passivation Behavior of Oxidized and Unoxidized Superelastic Nitinol Alloys. J. of Materi Eng and Perform 27, 501–509 (2018). https://doi.org/10.1007/s11665-018-3200-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3200-6

Keywords

Navigation