Skip to main content
Log in

Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris’ law. Results show neither Richard’s nor Tanaka’s equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard’s equivalent SIF formula is more suitable than Tanaka’s formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, da/dN increases as K eq decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Cvetkovski, J. Ahlstrom, M. Norell, and C. Persson, Analysis of Wear Debris in Rolling Contact Fatigue Cracks of Pearlitic Railway Wheels, Wear, 2014, 314, p 51–56

    Article  Google Scholar 

  2. L. Hua, S. Deng, X. Han, and S. Huang, Effect of Material Defects on Crack Initiation Under Rolling Contact Fatigue in a Bearing Ring, Tribiol. Int., 2013, 66, p 315–323

    Article  Google Scholar 

  3. D. Hannes and B. Alfredsson, Modelling of Surface Initiated Rolling Contact Fatigue Damage, Procedia Eng., 2013, 66, p 766–774

    Article  Google Scholar 

  4. B. Zafosnik, S. Glodez, M. Ulbin, and J. Flas, A Fracture Mechanics Model for the Analysis of Micro-pitting in Regard to Lubricated Rolling—Sliding Contact Problems, Int. J. Fatigue, 2007, 29, p 1950–1958

    Article  Google Scholar 

  5. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85, p 528–534

    Article  Google Scholar 

  6. R.G. Forman, V.E. Kearney, and R.M. Engle, Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures, J. Basic Eng., 1967, 89, p 459–463

    Article  Google Scholar 

  7. F. Erdogan and M. Ratwani, Fatigue and Fracture of Cylindrical Shells Containing a Circum-Ferential Crack, Int. J. Fract. Mech., 1970, 6, p 379–392

    Article  Google Scholar 

  8. H.A. Hassan, A.B. El-shabasy, and J.J. Lewandowski, The Effect of Mixed Mode I/II, on the Fracture Toughness and Fracture Behavior of Nano-Structured Metal Matrix Composites, Mater. Sci. Eng., A, 2013, 559, p 897–901

    Article  Google Scholar 

  9. P.A.S. Reed, P.H. Tucker, and M.R. Joyce, Effects of Mixed Mode Loading on Fatigue and Creep—Fatigue in SRR-99 Single Crystals, Mater. Sci. Eng., A, 2005, 394, p 256–265

    Article  Google Scholar 

  10. L. Tian, L. Dong, S. Bhavanam, N. Phan, and S.N. Atluri, Mixed-Mode Fracture & Non-Planar Fatigue Analyses of Cracked I-Beams, Using a 3D SGBEM—FEM Alternating Method, Theor. Appl. Fract. Mech., 2014, 74, p 188–199

    Article  Google Scholar 

  11. F.J. Gomez, M. Elices, F. Berto, and P. Lazzarin, Fracture of V-Notched Specimens Under Mixed Mode (I + II) Loading in Brittle Materials, Int. J. Fract., 2009, 159, p 121–135

    Article  Google Scholar 

  12. S. Hassanifard, M.A. Mohtadi-Bonab, and G. Jabbari, Investigation of Fatigue Crack Propagation in Spot-Welded Joints Based on Fracture Mechanics Approach, J. Mater. Eng. Perform., 2013, 22, p 245–250

    Article  Google Scholar 

  13. M.R.M. Aliha and M.R. Ayatollahi, Rock Fracture Toughness Study Using Cracked Chevron Notched Brazilian Disc Specimen Under Pure Modes I, and II, Loading—A Statistical Approach, Theor. Appl. Fract. Mech., 2014, 69, p 17–25

    Article  Google Scholar 

  14. F. Berto, M.R. Ayatollahi, T. Borsato, and P. Ferro, Local Strain Energy Density to Predict Size-Dependent Brittle Fracture of Cracked Specimens Under Mixed Mode Loading, Theor. Appl. Fract. Mech., 2016, Accepted Manuscript

  15. A. Campagnolo, F. Berto, and D. Leguillon, Fracture assessment of sharp V-notched components under Mode II loading : a comparison among some recent criteria, Theor. Appl. Fract. Mech., 2016, Article in Press

  16. M.R. Ayatollahi, M.R. Moghaddam, and F. Berto, A Generalized Strain Energy Density Criterion for Mixed Mode Fracture Analysis in Brittle and Quasi-Brittle Materials, Theor. Appl. Fract. Mech., 2015, 79, p 70–76

    Article  Google Scholar 

  17. R. Negru, L. Marsavina, H. Filipescu, and N. Pasca, Investigation of Mixed Mode I/II, Brittle Fracture Using ASCB Specimen, Int. J. Fract., 2013, 181, p 155–161

    Article  Google Scholar 

  18. H.A. Richard and K. Benitz, A Loading Device for the Creation of Mixed Mode In Fracture Mechanics, Int. J. Fract., 1983, 22, p 55–58

    Article  Google Scholar 

  19. L.P. Borrego, F.V. Antunes, J.M. Costa, and J.M. Ferreira, Mixed-Mode Fatigue Crack Growth Behaviour in Aluminium Alloy, Int. J. Fatigue, 2006, 28, p 618–626

    Article  Google Scholar 

  20. S. Ma, X.B. Zhang, N. Recho, and J. Li, The Mixed-Mode Investigation of the Fatigue Crack in CTS Metallic Specimen, Int. J. Fatigue, 2006, 28, p 1780–1790

    Article  Google Scholar 

  21. S.H.A. Jiangbo, Sun Jun, Z.H.U. Pin, D. Zengjie, and Z. Huijiu, Study on the Behavior of Elastic-Plastic Fracture Under Mixed I + II, Mode Loading in Aluminum alloy Ly12- J -integral analysis, Int. J. Fract., 2000, 102, p 141–154

    Article  Google Scholar 

  22. M. Sander and H.A. Richard, Experimental and Numerical Investigations on the Influence of the Loading Direction on the Fatigue Crack Growth, Int. J. Fatigue, 2006, 28, p 583–591

    Article  Google Scholar 

  23. G.y. Lin and D.K. Shetty, Transformation zones, crack shielding, and crack-growth resistance of Ce-TZP/alumina composite in mode II and combined mode II and mode I loading, Eng. Fract. Mech., 2003, 70, p 2569–2585

  24. J. Jamali, Y. Fan, and J.T. Wood, The Mixed-Mode Fracture Behaviour of Epoxy by the Compact Tension Shear Test, Int. J. Adhes. Adhes., 2015, 63, p 79–86

    Article  Google Scholar 

  25. J. Jamali, A.-H.I. Mourad, Y. Fan, and J.T. Wood, Through-Thickness Fracture Behavior Of Unidirectional Glass Fibers/Epoxy Composites Under Various In-Plane Loading Using the CTS Test, Eng. Fract. Mech., 2016, 156, p 83–95

    Article  Google Scholar 

  26. M.R. Ayatollahi, S. Shadlou, and M.M. Shokrieh, Correlation Between Aspect Ratio of MWCNTs and Mixed Mode Fracture of Epoxy Based Nanocomposites, Mater. Sci. Eng., A, 2011, 528, p 6173–6178

    Article  Google Scholar 

  27. E.N. Brown, P.J. Rae, and C. Liu, Mixed-Mode-I/II, Fracture of Polytetrafluoroethylene, Mater. Sci. Eng., A, 2007, 470, p 253–258

    Article  Google Scholar 

  28. T.N. Chakherlou, H.N. Maleki, B. Abazadeh, and A.B. Aghdam, Investigating Bolt Clamping Force Effect on the Mixed Mode Fracture Strength And Stress Intensity Factor for an Edge Crack in PMMA Specimens, Mater. Sci. Eng., A, 2012, 533, p 71–81

    Article  Google Scholar 

  29. T.N. Chakherlou, V. Valimohammadi-Bonab, and M.A. Mohtadi-Bonab, Use of Geometric Modifications to Improve Fracture Force in Edge-Cracked Specimens, J. Mater. Eng. Perform., 2016, p

  30. M.R.M. Aliha and M.R. Ayatollahi, On Mixed-Mode I/II, Crack Growth in Dental Resin Materials, Scripta Mater., 2008, 59, p 258–261

    Article  Google Scholar 

  31. S.B. Biner, Fatigue Crack Growth Studies Under Mixed-Mode Loading, Int. J. Fatigue, 2001, 23, p 259–263

    Article  Google Scholar 

  32. T.-Y. Kim and H.-K. Kim, Mixed-Mode Fatigue Crack Growth Behavior of Fully Lower Bainite Steel, Mater. Sci. Eng., A, 2013, 580, p 322–329

    Article  Google Scholar 

  33. Z. Ding, Z. Gao, C. Ma, and X. Wang, Modeling of I + II, Mixed Mode Crack Initiation and Growth From the Notch, Theor. Appl. Fract. Mech., 2016, 84, p 129–139

    Article  Google Scholar 

  34. C.D.M. Muscat-fenech and S. Ciappara, Connecting the Essential Work of Fracture, Stress Intensity Factor, Hill’ s Criterion in Mixed Mode I/II, Loading, Int. J. Fract., 2013, 183, p 187–202

    Article  Google Scholar 

  35. K.-J. Seo, B.-H. Choi, J.-M. Lee, and S.-M. Shin, Investigation of the Mixed-Mode Fatigue Crack Growth of a Hot-Rolled Steel Plate with a Circular Microdefect, Int. J. Fatigue, 2010, 32, p 1190–1199

    Article  Google Scholar 

  36. J.K. Kim and C.S. Kim, Fatigue crack growth behavior of rail steel under mode I and mixed mode loadings, Mater. Sci. Eng. A, 2002, 338, p 191–201

  37. S.L. Wong, P.E. Bold, M.W. Brown, and R.J. Allen, Fatigue Crack Growth Rates Under Sequential Mixed-Mode I, and II, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 667–674

    Article  Google Scholar 

  38. V. Doquet and S. Pommier, Fatigue Crack Growth Under Non-Proportional Mixed-Mode Loading in Ferritic-Pearlitic Steel, Fatigue Fract. Eng. Mater. Struct., 2004, 27, p 1051–1060

    Article  Google Scholar 

  39. H. Desimone and S. Beretta, Mechanisms of Mixed Mode Fatigue Crack Propagation at Rail Butt-Welds, Int. J. Fatigue, 2006, 28, p 635–642

    Article  Google Scholar 

  40. R. Wei, K. Zhou, L.M. Keer, and Q. Fan, Modeling Surface Pressure, Interfacial Stresses And Stress Intensity Factors for Layered Materials Containing Multiple Cracks And Inhomogeneous Inclusions Under Contact Loading, Mech. Mater., 2016, 92, p 8–17

    Article  Google Scholar 

  41. M.G. Tarantino, S. Beretta, S. Foletti, and I. Papadopoulos, Experiments Under Pure Shear And Rolling Contact Fatigue Conditions: Competition Between Tensile and Shear Mode Crack Growth, Int. J. Fatigue, 2013, 46, p 67–80

    Article  Google Scholar 

  42. K. Aslantas and S. Tasgetiren, A Study of Spur Gear Pitting Formation and Life Prediction, Wear, 2004, 257, p 1167–1175

    Article  Google Scholar 

  43. H. Heirani and K. Farhangdoost, Predicting Depth and Path of Subsurface Crack propagation at Gear Tooth Flank under Cyclic Contact Loading, J. Solid. Mech., 2017, 9, p 587–598

    Google Scholar 

  44. G. Fajdiga, S. Glodez, and J. Kramar, Pitting Formation Due to Surface and Subsurface Initiated Fatigue Crack Growth in Contacting Mechanical Elements, Wear, 2007, 262, p 1217–1224

    Article  Google Scholar 

  45. G. Fajdiga and M. Sraml, Fatigue Crack Initiation and Propagation Under Cyclic Contact Loading, Eng. Fract. Mech., 2009, 76, p 1320–1335

    Article  Google Scholar 

  46. J. Montalvo-Urquizo, Q. Liu, and A. Schmidt, Simulation of Quenching Involved In Induction Hardening Including Mechanical Effects, Comput. Mater. Sci., 2013, 79, p 639–649

    Article  Google Scholar 

  47. ASTM, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” 2014

  48. K. Tanaka, Fatigue Crack Propagation From a Crack Inclined, Eng. Fract. Mech., 1974, 6, p 493–507

    Article  Google Scholar 

  49. H.A. Richard, B. Schramm, and N. Schirmeisen, Cracks on Mixed Mode loading—Theories, Experiments, Simulations, Int. J. Fatigue, 2014, 62, p 93–103

    Article  Google Scholar 

  50. S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, New York, 1998

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Farhangdoost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heirani, H., Farhangdoost, K. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4. J. of Materi Eng and Perform 27, 138–146 (2018). https://doi.org/10.1007/s11665-017-3083-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3083-y

Keywords

Navigation