Skip to main content
Log in

Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. O.M. Alyousif, D.L. Engelberg, and T.J. Marrow, Surface Grain Boundary Engineering of Shot-Peened Type 304 Stainless Steel, J. Mater. Sci., 2007, 43, p 1270-1277

    Article  Google Scholar 

  2. S. Rahimi, D.L. Engelberg, and T.J. Marrow, A New Approach for DL-EPR Testing of Thermo-mechanically Processed Austenitic Stainless Steel, Corros. Sci., 2011, 53, p 4213-4222

    Article  Google Scholar 

  3. S.A. Naghibi, K. Raeissi, and M.H. Fathi, Corrosion and Tribocorrosion Behavior of Ti/TiN PVD Coating on 316L Stainless Steel Substrate in Ringer’s Solution, Mater. Chem. Phys., 2014, 148, p 614-623

    Article  Google Scholar 

  4. J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang, and Y.K. Zhang, Effects of Laser Peening on Stress Corrosion Cracking (SCC) of ANSI 304 Austenitic Stainless Steel. Corros. Sci., 2012, 60, p 145-152

  5. P. Peyre, X. Scherpereel, and L. Berthe, Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance, Mater. Sci., 2000, 280, p 294-302

    Google Scholar 

  6. H. Lee, D. Kim, J. Jung, Y. Pyoun, and K. Shin, Influence of Peening on the Corrosion Properties of AISI, 304 Stainless Steel, Corros. Sci., 2009, 51, p 2826-2830

    Article  Google Scholar 

  7. A. Heyn, A. Bukert, and J. Göllner, Der Einfluss des Oberflächenzustandes auf die Initiierung örtlicher Korrosion, in Korrosion nichtrostender Stähle- Auf die Oberfläche kommt es an, 2008, p 46-54

  8. H. Gräfen and D. Kuron, Lochkorrosion an Nichtrostenden Stahlen, Mater. Corros., 1996, 47, p 16-26

    Article  Google Scholar 

  9. B. Krawczyk, B. Heine, and D.L. Engelberg, Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment, J. Mater. Eng. Perform., 2016, 25, p 884-893

    Article  Google Scholar 

  10. M. Švantner, M. Kučera, E. Smazalová, Š. Houdková, and R. Čerstvý, Thermal Effects of Laser Marking on Microstructure and Corrosion Properties of Stainless Steel, Appl. Opt., 2016, 55, p D35

    Article  Google Scholar 

  11. S.K. Lawrence, D.P. Adams, D.F. Bahr, and N.R. Moody, Environmental Resistance of Oxide Tags Fabricated on 304L Stainless Steel Via Nanosecond Pulsed Laser Irradiation, Surf. Coat. Technol., 2016, 285, p 87-97

    Article  Google Scholar 

  12. S.K. Lawrence, D.P. Adams, D.F. Bahr, and N.R. Moody, Mechanical and Electromechanical Behavior of Oxide Coatings Grown on Stainless Steel 304L by Nanosecond Pulsed Laser Irradiation, Surf. Coat. Technol., 2013, 235, p 860-866

    Article  Google Scholar 

  13. D.P. Adams, V.C. Hodges, D.A. Hirschfeld, M.A. Rodriguez, J.P. McDonald, and P.G. Kotula, Nanosecond Pulsed Laser Irradiation of Stainless Steel 304L: Oxide Growth and Effects on Underlying Metal, Surf. Coat. Technol., 2013, 222, p 1-8

    Article  Google Scholar 

  14. W. Pacquentin, N. Caron, and R. Oltra, Effect of Microstructure and Chemical Composition on Localized Corrosion Resistance of a AISI, 304L Stainless Steel After Nanopulsed-Laser Surface Melting, Appl. Surf. Sci., 2015, 356, p 561-573

    Article  Google Scholar 

  15. W. Pacquentin, N. Caron, and R. Oltra, Nanosecond Laser Surface Modification of AISI, 304L Stainless Steel: Influence the Beam Overlap on Pitting Corrosion Resistance, Appl. Surf. Sci., 2014, 288, p 34-39

    Article  Google Scholar 

  16. S. Valette, P. Steyer, L. Richard, B. Forest, C. Donnet, and E. Audouard, Influence of Femtosecond Laser Marking on the Corrosion Resistance of Stainless Steels, Appl. Surf. Sci., 2006, 252, p 4696-4701

    Article  Google Scholar 

  17. A. Conde, I. Garcíaonde, and J.J. de Damborenea, Pitting Corrosion of 304 Stainless Steel After Laser Surface Melting in Argon and Nitrogen Atmospheres, Corros. Sci., 2001, 43, p 817-828

    Article  Google Scholar 

  18. B. Krawczyk and D.L. Engelberg, Effect of Aqua Blasting, Sandblasting and Laser Engraving on the Corrosion Resistance of Type 316 Stainless Steel, BHM Berg-Huettenmaenn. Monatsh., 2016, 161, p 50-55

    Article  Google Scholar 

  19. P.J. Ogrodnik, C.I. Moorcroft, and P. Wardle, The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices, J. Med. Eng., 2013, 2013, p 1-6

    Article  Google Scholar 

  20. R. Ovarfort, New Electrochemical Cell for Pitting Corrosion Testing, Corros. Sci., 1988, 28, p 135-140

    Article  Google Scholar 

  21. Z.M. Lu, H.G. Gao, and C.H. Zhu, Influence of Shot Peening Pressure on Stress Corrosion Susceptibility of 304 Austenitic Stainless Steel, Adv. Mater. Res., 2012, 486, p 524-528

    Article  Google Scholar 

  22. C. Cui, J. Hu, Y. Liu, and Z. Guo, Microstructure Evolution on the Surface of Stainless Steel by Nd:YAG Pulsed Laser Irradiation, Appl. Surf. Sci., 2008, 254, p 3442-3448

    Article  Google Scholar 

  23. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, p 2717-2730

    Article  Google Scholar 

  24. E. De Vito and P. Marcus, XPS Study of Passive Films Formed on Molybdenum-Implanted Austenitic Stainless Steels, Surf. Interface Anal., 1992, 19, p 403-408

    Article  Google Scholar 

  25. S. Tardio, M.-L. Abel, R.H. Carr, J.E. Castle, and J.F. Watts, Comparative Study of the Native Oxide on 316L Stainless Steel by XPS and ToF-SIMS, J. Vac. Sci. Technol. A Vacuum, Surfaces Film., 2015, 33, p 05E122

  26. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds, Surf. Interface Anal., 2004, 36, p 1564-1574

    Article  Google Scholar 

  27. C. Cui, J. Hu, Y. Liu, K. Gao, and Z. Guo, Morphological and Structural Characterizations of Different Oxides Formed on the Stainless Steel by Nd:YAG Pulsed Laser Irradiation, Appl. Surf. Sci., 2008, 254, p 6537-6542

    Article  Google Scholar 

  28. K.M. Łęcka, A.J. Antończak, B. Szubzda, M.R. Wójcik, B.D. Stępak, P. Szymczyk, M. Trzciński, M. Ozimek, and K.M. Abramski, Effects of Laser-Induced Oxidation on the Corrosion Resistance of AISI, 304 Stainless Steel, J. Laser Appl., 2016, 28, p 32009

    Article  Google Scholar 

  29. G. Lorang and M.D.C. Belo, Chemical Composition of Passive Films on AISI, 304 Stainless Steel, J. Electrochem. Soc., 1994, 141, p 3347-3356

    Article  Google Scholar 

  30. M.F. Lopez, A. Gutierrez, F.J. Perez, M.P. Hierro, and F. Pedraza, Soft X-ray Absorption Spectroscopy Study of the Effects of Si, Ce, and Mo Ion Implantation on the Passive Layer of AISI, 304 Stainless Steel, Corros. Sci., 2003, 45, p 2043-2053

    Article  Google Scholar 

  31. V. Maurice, W.P. Yang, and P. Marcus, X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100), J. Electrochem. Soc., 1998, 145, p 909-920

    Article  Google Scholar 

  32. I. Olefjord and L. Wegrelius, Surface Analysis of Passive State, Corros. Sci., 1990, 31, p 89-98

    Article  Google Scholar 

  33. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, and N.S. McIntyre, New Interpretations of XPS Spectra of Nickel Metal and Oxides, Surf. Sci., 2006, 600, p 1771-1779

    Article  Google Scholar 

  34. L. Lim, L. Seng, and S. Lim, Effect of Vapour Blasting on Fatigue Life on Age-Hardened Aluminium Alloy, J. Mater. Process. Technol., 1995, 48, p 675-681

    Article  Google Scholar 

  35. B. Arifvianto, S. K. a. Wibisono, and M. Mahardika, Influence of Grit Blasting Treatment Using Steel Slag Balls on the Subsurface Microhardness, Surface Characteristics and Chemical Composition Of Medical Grade 316L Stainless Steel, Surf. Coat. Technol., 2012, 210, p 176-182

  36. M. Multigner, S. Ferreira-Barragáns, E. Frutos, M. Jaafar, J. Ibanez, P. Marin, M.T. Perez-Prado, G. Gonzalez-Doncel, A. Asenjo, and J.L. González-Carrasco, Superficial Severe Plastic Deformation of 316 LVM Stainless Steel Through Grit Blasting: Effects on Its Microstructure and Subsurface Mechanical Properties, Surf. Coat. Technol., 2010, 205, p 1830-1837

    Article  Google Scholar 

  37. M. Multigner, E. Frutos, J.L. González-Carrasco, J.a. Jiménez, P. Marín, and J. Ibáñez, Influence of the Sandblasting on the Subsurface Microstructure of 316LVM Stainless Steel: Implications on the Magnetic and Mechanical Properties, Mater. Sci. Eng. C, 2009, 29, p 1357-1360

  38. A. Rhouma, H. Sidhom, and C. Braham, Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels, J. Mater., 2001, 10, p 507-514

    Google Scholar 

  39. P. Peyre, C. Braham, J. Lédion, L. Berthe, and R. Fabbro, Corrosion Reactivity of Laser-Peened Steel Surfaces, J. Mater. Eng. Perform., 2000, 9, p 656-662

    Article  Google Scholar 

  40. T. Prosek, A. Iversen, C. Taxén, and D. Thierry, Low-Temperature Stress Corrosion Cracking of Stainless Steels in the Atmosphere in the Presence of Chloride Deposits, Corrosion, 2009, 65, p 105-117

    Article  Google Scholar 

  41. O.E. Albores-Silva, E.A. Charles, and C. Padovani, Effect of Chloride Deposition on Stress Corrosion Cracking of 316L Stainless Steel Used for Intermediate Level Radioactive Waste Containers, Corros. Eng. Sci. Technol., 2011, 46, p 124-128

    Article  Google Scholar 

  42. W. Lv, C. Pan, W. Su, Z. Wang, S. Liu, and C. Wang, Atmospheric Corrosion Mechanism of 316 Stainless Steel in Simulated Marine Atmosphere, Corros. Eng. Sci. Technol., 2016, 51, p 155-162

    Article  Google Scholar 

  43. G. Vanboven, W. Chen, R. Rogge, G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence, Acta Crystallogr., 2007, 55, p 29-42

    Google Scholar 

  44. B. Krawczyk, P. Cook, J. Hobbs, and D. Engelberg, Corrosion Behavior of Cold Rolled Type 316L Stainless Steel in HCl Containing Environments, Corrosion, 2017, 73, p 1346-1358

    Article  Google Scholar 

  45. T. Suter and H. Böhni, Microelectrodes for Studies of Localized Corrosion Processes, Electrochim. Acta, 1998, 43, p 2843-2849

    Article  Google Scholar 

  46. T. Suter and H. Böhni, A New Microelectrochemical Method to Study Pit Initiation on Stainless Steels, Electrochim. Acta, 1997, 42, p 3275-3280

    Article  Google Scholar 

  47. C.C. Su, J.-H. Wang, C.C. Su, and Z. Szklarska-Smialowska, Effects of CI—Concentration and Temperature on Pitting of AISI, 304 Stainless Steel, Corrosion, 1988, 44, p 732-737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Krawczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk, B., Cook, P., Hobbs, J. et al. Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel. J. of Materi Eng and Perform 26, 6167–6181 (2017). https://doi.org/10.1007/s11665-017-3053-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3053-4

Keywords

Navigation