Skip to main content
Log in

Studying the Effect of PWHT on Microstructural Evolution and Mechanical Properties of Welded A517 Quenched and Tempered Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Sometimes post-weld heat treatment (PWHT) is required for stress relieving both the weld metal and heat-affected zone in A517 Quenched and Tempered (QT) steels. This process unavoidably results in further tempering which adversely affects the mechanical properties of the welded joints. Investigations on A517 QT steel are presented in as-welded condition and after PWHT at 560 and 630  °C. Microstructural variation upon applying PWHT and its influence on impact absorbed energy, fatigue behavior, tensile and hardness properties of the material in as-welded condition and after PWHT are studied. The decrease in hardness is very remarkable after PWHT at 630 °C. Increasing heat treatment temperature from 560 to 630 °C results in reduction of YS and UTS. Void coalescence and coarsening of carbides after PWHT makes the fracture easier and results in reduction of absorbed impact energy. Elimination of acicular ferrite after PWHT at 630 °C increases crack growth rate, and fatigue endurance limit is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Datta, D. Mukerjee, S. Jha, K. Narasimhan, and R. Veeraraghavan, Weldability Characteristics of Shielded Metal Arc Welded High Strength Quenched and Tempered Plates, J. Mater. Eng. Perform., 2002, 11, p 5–10

    Article  Google Scholar 

  2. E.J. Czyryca, D.P. Kihl, and R. DeNale, Meeting the Challenge of Higher Strength, Lighter, Affordable Warships, AMPTIAC Q., 2003, 7, p 63–70

    Google Scholar 

  3. P. Phetlam and V. Uthaisangsuk, Microstructure Based Flow Stress Modeling for Quenched and Tempered Low Alloy Steel, Mater. Des., 2015, 82, p 189–199

    Article  Google Scholar 

  4. X. Deng and D. Ju, Modeling and Simulation of Quenching and Tempering Process in Steels, Phys. Proc., 2013, 50, p 368–374

    Article  Google Scholar 

  5. G. Magudeeswaran, V. Balasubramanian, and G.M. Reddy, Effect of Welding Processes and Consumables on Fatigue Crack Growth Behaviour of Armour Grade Quenched and Tempered Steel Joints, Def. Technol., 2014, 10, p 47–59

    Article  Google Scholar 

  6. Y. Sun, J. Chen, and J. Liu, Effect of Hydrogen on Ductility of High Strength Quenched and Tempered (QT) Cr Ni Mo Steels, Mater. Sci. Eng., A, 2015, 625, p 89–97

    Article  Google Scholar 

  7. R. Sepehrzad, E.H. Dehkordi, A. Shafiei, A.A. Aqda, and A. Estiri, Effect of Stress Relieving on Mechanical and Metallurgical Properties of Shielded Metal Arc Welded Joints of A517 Steel, Int. J. ISSI, 2015, 12(2015), p 21–27

    Google Scholar 

  8. Z. Sterjovski, D.P. Dunne, and S. Ambrose, Evaluation of Cross-Weld Properties of Quenched and Tempered Pressure Vessel Steel Before and After PWHT, Int. J. Press. Vessel Pip., 2004, 81, p 465–470

    Article  Google Scholar 

  9. D. Radaj, C.M. Sonsino, and D. Flade, Prediction of Service Fatigue Strength of a Welded Tubular Joint on the Basis of the Notch Strain Approach, Int. J. Fatigue, 1998, 20, p 471–480

    Article  Google Scholar 

  10. T.L. Teng, C.P. Fung, and P.H. Chang, Effect of Residual Stresses on the Fatigue of butt joints using thermal elasto-plastic and Multiaxial Fatigue Theory, Eng. Fail. Anal., 2003, 10(2003), p 131–151

    Article  Google Scholar 

  11. V. Balasubramanian, B. Guha, A.S.J. Swamidas, and R. Seshadri, Influences of Shielded Metal Arc Welded Cruciform Joint Dimensions on Toe Crack Failures of Pressure Vessel Grade Steels, Eng. Fail. Anal., 2000, 7, p 169–179

    Article  Google Scholar 

  12. M.S. Zhao, S.P. Chiew, and C.K. Lee, Post Weld Heat Treatment for High Strength Steel Welded Connections, J. Constr. Steel Res., 2016, 122, p 167–177

    Article  Google Scholar 

  13. K.H. Lee, M.J. Jhung, M.C. Kim, and B.S. Lee, Effects of Tempering and PWHT on Microstructures and Mechanical Properties of SA508 GR.4 N Steel, Nucl. Eng. Technol., 2014, 46, p 413–422

    Article  Google Scholar 

  14. W. Guo, S. Dong, J.A. Francis, and L. Li, Microstructure and Mechanical Characteristics of a Laser Welded Joint in SA508 Nuclear Pressure Vessel Steel, Mater. Sci. Eng., A, 2015, 625, p 65–80

    Article  Google Scholar 

  15. M.O.O’Brien, R.F.Lumb, Effect of Repeated Post Weld Heat Treatment Cycles on Properties of a Quench and Tempered Pressure Vessel Plate. Australas. Weld. J. 45 (2000) 45

  16. K. Horikawa, S. Fukuda, and Y. Kishimoto, Fatigue Crack Growth Rate in Welded Joints After Stess Relief Heat Treatment, Trans. JWRI, 1981, 10, p 219–231

    Google Scholar 

  17. W.A. Logsdon, The Influence of Long-Time Stress Relief Treatments on the Dynamic Fracture Toughness Properties of ASME SA508 C1 2a and ASME SA533 Gr B C1 2 Pressure Vessel Steels, J. Mater. Energy Syst., 1982, 3, p 39–50

    Article  Google Scholar 

  18. Method of Repeated Tension Fatigue Testing for Fusion Welded Joint, JIS Z3103. (Japanese Industrial Standard, Japanese Standard Association, 1987)

  19. ASTM, Charpy V-Notch, ASTM E23-06 Standard Methods for Impact Tests on Metals, Philadelphia, 1999.

  20. J. Nicholas, Are Quenched and Tempered (Q & T) Steels Readily Weldable? (TWI, 2002), p 1-2.

  21. ASM Handbook, vol 11, 9th edn. (American Society for Metals, 1989), p. 102–135

  22. C.S. Lee, R.S. Chandel, and H.P. Seow, Effect of Welding Parameters on the Size of Heat Affected Zone of Submerged Arc Welding, Mater. Manuf. Process., 2000, 15, p 649–666

    Article  Google Scholar 

  23. H. Bhadeshia, Design of Ferritic Creep Resistant Steels, ISIJ Int., 2001, 41, p 626–640

    Article  Google Scholar 

  24. ASME, Section IX, Qualification standard for welding and brazing procedures, welders, brazers, and welding and brazing operators, 2007, p 72–127.

  25. Australian Standard 3597, AS3597-1997. Structural and Pressure Vessel Steel-Quenched and Tempered Plate, 1997.

  26. A. Bensely, L. Shyamala, S. Harish, D. Mohan Lal, G. Nagarajan, K. Junik, and A. Rajadurai, Fatigue Behaviour and Fracture Mechanism of Cryogenically Treated En 353 Steel, Mater. Des., 2009, 30, p 2955–2962

    Article  Google Scholar 

  27. S. Kang and S.J. Lee, Prediction of Tempered Martensite Hardness Incorporating the Composition-Dependent Tempering Parameter in Low Alloy Steels, Jpn. Inst. Metals Mater. Mater. Trans., 2014, 55, p 1069–1072

    Google Scholar 

  28. R. Honeycombe and H. Bhadeshia, Steels: Microstructures and Properties, 2nd ed., Edward Arnold, London, 1995

    Google Scholar 

  29. G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan Reddy, and T.S. Balasubramaian, Effect of Welding Processes and Consumables on Tensile and Impact Properties of High Strength Quenched and Tempered Steel Joints, J. Iron. Steel Res. Int., 2008, 15, p 87–94

    Article  Google Scholar 

  30. K.H. Lee, S.G. Park, M.C. Kim, B.S. Lee, and D.M. Wee, Characterization of Transition Behavior in SA508 Gr.4 N Ni-Cr-Mo Low Alloy Steels with Microstructural Alternation by Ni and Cr Contents, Mater. Sci. Eng., A, 2011, 529, p 156–163

    Article  Google Scholar 

  31. K.H. Lee, S.G. Park, M.C. Kim, and B.S. Lee, Cleavage Fracture Toughness of Tempered Martensitic Ni-Cr-Mo Low Alloy Steel with Different Martensite Fraction, Mater. Sci. Eng., A, 2012, 534, p 75–82

    Article  Google Scholar 

  32. J. Maciejewski, The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components, J. Fail. Anal. Prev., 2015, 15, p 169–178

    Article  Google Scholar 

  33. H. Zakerinia, A. Kermanpur, and A. Najafizadeh, Color Metallography; A Suitable Method for Characterization of Martensite and Bainite in Multiphase Steels, International Journal of ISSI., 2009, 6, p 14–18

    Google Scholar 

  34. ASM Handbook, American Society for Metals, 9th ed. Vol.6, 1983.

  35. R.A. Howell, G.S.Barritte, The nature of acicular ferrite in HSLA steel weld metals, J Mat Sci. 17 (1985) 732-740.

  36. K.S. Chan, P. Yi-Ming, D. Davidson, and R.C. McClung, Fatigue Crack Growth Mechanisms in HSLA-80 Steels, Mater. Sci. Eng., A, 1997, 222, p 1–8

    Article  Google Scholar 

  37. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Strain-Controlled Low Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy, Metall. Mater. Trans. A, 2008, 39A, p 3014–3026

    Article  Google Scholar 

  38. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Effect of Strain Ratio and Strain Rate on Low Cycle Fatigue Behavior of AZ31 Wrought Magnesium Alloy, Mater. Sci. Eng., A, 2009, 517, p 334–343

    Article  Google Scholar 

  39. J. Hu, L.X. Du, M. Zang, S.J. Yin, Y.G. Wang, X.Y. Qi, X.H. Gao, and R.D.K. Misra, On the Determining Role of Acicular Ferrite in V-N Microalloyed Steel in Increasing Strength-Toughness Combination, Mater. Charact., 2016, 118, p 446–453

    Article  Google Scholar 

  40. J. Wang and Y.J. Li, Microstructure Characterization in the Weld Metals of HQ130 QJ63 High Strength Steels, Bull. Mat. Sci., 2003, 36, p 35–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Derakhshandeh-Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiei, A., Derakhshandeh-Haghighi, R. Studying the Effect of PWHT on Microstructural Evolution and Mechanical Properties of Welded A517 Quenched and Tempered Steel. J. of Materi Eng and Perform 26, 4567–4577 (2017). https://doi.org/10.1007/s11665-017-2868-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2868-3

Keywords

Navigation