Skip to main content
Log in

Characterization of Thermal, Mechanical and Tribological Properties of Fluoropolymer Composite Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Perfluoroalkoxy (PFA) is a potential polymer coating material for low-temperature waste heat recovery in heat exchangers. Nonetheless, poor thermal conductivity, low strength and susceptibility to surface degradation by erosion/wear pose restrictions in its application. In this study, four types of fillers, namely graphite, silicon carbide, alumina and boron nitride, were introduced to enhance the thermal, mechanical and tribological properties in PFA coatings. The thermal diffusivity and specific heat capacity of the composites (reinforced with 20 wt.% filler) were also measured using laser flash and differential scanning calorimetry techniques, respectively. The results indicated that the addition of graphite or boron nitride increased the thermal conductivity of PFA by at least 2.8 orders of magnitude, while the composites with the same weight fraction of alumina or silicon carbide showed 20-80% rise in thermal conductivity. The micromechanical deformation and tribological behavior of composite coatings, electrostatically sprayed on steel substrates, were investigated by means of instrumented indentation and scratch tests. The deformation response and friction characteristics were investigated, and the failure mechanisms were identified. Surface hardness, roughness and structure of fillers influenced the sliding performance of the composite coatings. PFA coatings filled with Al2O3 or SiC particles showed high load-bearing capacity under sliding conditions. Conversely, BN- and graphite-filled PFA coatings exhibited lower interfacial adhesion to steel substrate and were prone to failure at relatively lower applied loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.G. Drobny, Technology of Fluoropolymers, 2nd ed., CRC Press, Boca Raton, 2008

    Book  Google Scholar 

  2. Y. He, J.S.H. Lo, and R. Santos, Method and Composite for Preparing Heat Exchangers for Corrosive Environments. WO2014012161 A1, 2014

  3. Y. He, D. Walsh, and C. Shi, Fluoropolymer Composite Coating for Condensing Heat Exchangers: Characterization of the Mechanical, Tribological and Thermal Properties, Appl. Therm. Eng., 2015, 91, p 387–398

    Article  Google Scholar 

  4. D.M. Bigg, G.H. Stickford, and S.G. Talbert, Applications of Polymeric Materials for Condensing Heat Exchangers, Polym. Eng. Sci., 1989, 29(16), p 1111–1116

    Article  Google Scholar 

  5. P.D. Roach and R.E. Holtz, Plastic Heat Exchangers for Waste Heat Recovery, Argonne National Lab, Lemont, 1983

    Google Scholar 

  6. Y. Agari, A. Ueda, M. Tanaka, and S. Nagai, Thermal Conductivity of a Polymer Filled with Particles in the Wide Range from Low to Super-High Volume Content, J. Appl. Polym. Sci., 1990, 40(56), p 929–941

    Article  Google Scholar 

  7. A. Boudenne, L. Ibos, M. Fois, J.C. Majesté, and E. Géhin, Electrical and Thermal Behavior of Polypropylene Filled with Copper Particles, Compos. A Appl. Sci. Manuf., 2005, 36(11), p 1545–1554

    Article  Google Scholar 

  8. Y.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev, Electrical and Thermal Conductivity of Polymers Filled with Metal Powders, Eur. Polym. J., 2002, 38(9), p 1887–1897

    Article  Google Scholar 

  9. M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley, and R.A.I. Reynolds, Thermal performance of natural graphite heat spreader, in ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference, 2005, p 79–89

  10. J.W. Anthony, R.A. Bideaux, K.W. Bladh, and M.C. Nichols, Handbook of Mineralogy: Volume I—Elements, Sulfides, Sulfosalts, Mineral Data Publishing, Tucson, 1990

    Google Scholar 

  11. ASTM E1461-01. Standard Test Method for Thermal Diffusivity of Solids by the Flash Method. ASTM Int. West Conshohocken, PA, 2001

  12. ASTM E1269-11. Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM Int. West Conshohocken, PA, 2011

  13. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, 32(9), p 1679

    Article  Google Scholar 

  14. P.-L. Larsson and S. Carlsson, On Microindentation of Viscoelastic Polymers, Polym. Test., 1998, 17(1), p 49–75

    Article  Google Scholar 

  15. J. Giró-Paloma, J.J. Roa, A.M. Díez-Pascual, E. Rayón, A. Flores, M. Martínez, J.M. Chimenos, and A.I. Fernández, Depth-Sensing Indentation Applied to Polymers: A Comparison Between Standard Methods of Analysis in Relation to the Nature of the Materials, Eur. Polym. J., 2013, 49(12), p 4047–4053

    Article  Google Scholar 

  16. ASTM E2546-07. Standard Practice for Instrumented Indentation Testing. ASTM Int. West Conshohocken, PA, 2007

  17. J. Chu, C. Xiang, H.-J. Sue, and R.D. Hollis, Scratch Resistance of Mineral-Filled Polypropylene Materials, Polym. Eng. Sci., 2000, 40(4), p 944–955

    Article  Google Scholar 

  18. C. Xiang, H.-J. Sue, J. Chu, and K. Masuda, Roles of Additives in Scratch Resistance of High Crystallinity Polypropylene Copolymers, Polym. Eng. Sci., 2001, 41(1), p 23–31

    Article  Google Scholar 

  19. H. Jiang, R. Browning, and H.-J. Sue, Understanding of Scratch-Induced Damage Mechanisms in Polymers, Polymer (Guildf), 2009, 50(16), p 4056–4065

    Article  Google Scholar 

  20. H. Jiang, R. Browning, J.D. Whitcomb, M. Ito, M. Shimouse, T.A. Chang, and H.-J. Sue, Mechanical Modeling of Scratch Behavior of Polymeric Coatings on Hard and Soft Substrates, Tribol. Lett., 2010, 37(2), p 159–167

    Article  Google Scholar 

  21. V. Jardret and P. Morel, Viscoelastic Effects on the Scratch Resistance of Polymers: Relationship Between Mechanical Properties and Scratch Properties at Various Temperatures, Prog. Org. Coat., 2003, 48(2), p 322–331

    Article  Google Scholar 

  22. A. Marec, J.-H. Thomas, and R. El Guerjouma, Damage Characterization of Polymer-Based Composite Materials: Multivariable Analysis and Wavelet Transform for Clustering Acoustic Emission Data, Mech. Syst. Signal Process., 2008, 22(6), p 1441–1464

    Article  Google Scholar 

  23. J.G.J. Bakuckas, W.H. Prosser, and W.S. Johnson, Monitoring Damage Growth in Titanium Matrix Composites Using Acoustic Emission, J. Compos. Mater., 1994, 28, p 305–328

    Article  Google Scholar 

  24. N.X. Randall, G. Favaro, and C.H. Frankel, The Effect of Intrinsic Parameters on the Critical Load as Measured with the Scratch Test Method, Surf. Coatings Technol., 2001, 137(2), p 146–151

    Article  Google Scholar 

  25. J. von Stebut, F. Lapostolle, M. Bucsa, and H. Vallen, Acoustic Emission Monitoring of Single Cracking Events and Associated Damage Mechanism Analysis in Indentation and Scratch Testing, Surf. Coatings Technol., 1999, 116, p 160–171

    Article  Google Scholar 

  26. K. Farokhzadeh, A. Edrisy, G. Pigott, and P. Lidster, Scratch Resistance Analysis of Plasma-Nitrided Ti–6Al–4V Alloy, Wear, 2013, 302(1–2), p 845–853

    Article  Google Scholar 

  27. S.J. Bull, Failure Modes in Scratch Adhesion Testing, Surf. Coat. Technol., 1991, 50(1), p 25–32

    Article  Google Scholar 

  28. V. Arumugam, S. Barath Kumar, C. Santulli, and A. Joseph Stanley, Effect of Fiber Orientation in Uni-Directional Glass Epoxy Laminate Using Acoustic Emission Monitoring, Acta Met. Sin., 2011, 24(5), p 351–364

    Google Scholar 

  29. J. Gamcová, G. Mohanty, Š. Michalik, J. Wehrs, J. Bednarčík, C. Krywka, J.M. Breguet, J. Michler, and H. Franz, Mapping Strain Fields Induced in Zr-Based Bulk Metallic Glasses During In Situ Nanoindentation by X-Ray Nanodiffraction, Appl. Phys. Lett., 2016, 108(3), p 31907

    Article  Google Scholar 

  30. G.J. Schneider, W. Hengl, K. Brandt, S.V. Roth, R. Schuster, and D. Göritz, Influence of the Matrix on the Fractal Properties of Precipitated Silica in Composites, J. Appl. Crystallogr., 2012, 45(3), p 430–438

    Article  Google Scholar 

  31. N.E. Zafeiropoulos, R.J. Davies, S.V. Roth, M. Burghammer, K. Schneider, C. Riekel, and M. Stamm, Microfocus X-Ray Scattering Scanning Microscopy for Polymer Applications, Macromol. Rapid Commun., 2005, 26(19), p 1547–1551

    Article  Google Scholar 

  32. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  33. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20

    Article  Google Scholar 

  34. Y. Agari and T. Uno, Estimation on Thermal Conductivities of Filled Polymers, J. Appl. Polym. Sci., 1986, 32(7), p 5705–5712

    Article  Google Scholar 

  35. D.M. Bigg, Thermal Conductivity of Heterophase Polymer Compositions, Thermal and Electrical Conductivity of Polymer Materials, Y.K. Godovsky and V.E. Privalko, Eds., Springer, Berlin, 1995, p 1–30

    Chapter  Google Scholar 

  36. C. Xiang, H.-J. Sue, J. Chu, and B. Coleman, Scratch Behavior and Material Property Relationship in Polymers, J. Polym. Sci. B Polym. Phys., 2001, 39(1), p 47–59

    Article  Google Scholar 

  37. T. Yamamoto and H. Furukawa, Relationship Between Molecular Structure and Deformation-Fracture Mechanism of Amorphous Polymers: 2. Crazing Stress, Polymer (Guildf), 1995, 36(12), p 2393–2396

    Article  Google Scholar 

  38. J. Eichler and C. Lesniak, Boron Nitride (BN) and BN Composites for High-Temperature Applications, J. Eur. Ceram. Soc., 2008, 28(5), p 1105–1109

    Article  Google Scholar 

  39. M. Zouari, M. Kharrat, M. Dammak, and M. Barletta, A Comparative Investigation of the Tribological Behavior and Scratch Response of Polyester Powder Coatings Filled with Different Solid Lubricants, Prog. Org. Coat., 2014, 77(9), p 1408–1417

    Article  Google Scholar 

  40. S. Krop, H.E.H. Meijer, and L.C.A. van Breemen, Finite Element Modeling and Experimental Validation of Single-Asperity Sliding Friction of Diamond Against Reinforced and Non-filled Polycarbonate, Wear, 2016, 356, p 77–85

    Article  Google Scholar 

  41. P. Kurkcu, L. Andena, and A. Pavan, An Experimental Investigation of the Scratch Behaviour of Polymers—2: Influence of Hard or Soft Fillers, Wear, 2014, 317(1), p 277–290

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development (ecoEII EEIN 010B). Daikin America Inc. is gratefully acknowledged for providing the PFA coating powders. Mr. Dan Walsh and Mr. Tyler Smith at CanmetMATERIALS, Natural Resources of Canada, are acknowledged for preparing the coating samples and measuring the thermal properties, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Edrisy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Farokhzadeh, K. & Edrisy, A. Characterization of Thermal, Mechanical and Tribological Properties of Fluoropolymer Composite Coatings. J. of Materi Eng and Perform 26, 2520–2534 (2017). https://doi.org/10.1007/s11665-017-2690-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2690-y

Keywords

Navigation