Skip to main content
Log in

Temperature Histories of Structural Steel Welds Calculated Using Solidification-Boundary Constraints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Temperature histories of structural steel deep-penetration welds are presented, which are calculated using numerical-analytical basis functions and solidification-boundary constraints. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries. In addition, the present study uses experimentally measured estimates of the heat effect zone edge to examine the consistency of calculated temperature histories for steel welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. Kou, Welding Metallurgy, 2nd ed., Wiley, New York, 2003. doi:10.1002/0471434027

  2. O. Grong, Metallurgical Modelling of Welding, 2nd ed., Materials Modelling Series, chap. 2, H.K.D.H. Bhadeshia, Ed., The Institute of Materials, UK, 1997, p 1–115

  3. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corporation, London, 1980

    Google Scholar 

  4. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd ed., Volume 1 of Fortran Numerical Recipes, Cambridge University Press, New York, 1997

  5. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005

    Book  Google Scholar 

  6. C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002

    Book  Google Scholar 

  7. A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005

    Google Scholar 

  8. J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York, 1995

    Google Scholar 

  9. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, New York, 1994

    Book  Google Scholar 

  10. M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000

    Google Scholar 

  11. K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics, Boston, 1995

    Google Scholar 

  12. J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Ohio, 1991, p 427–437

  13. J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, New York, 1998, p 13–24

  14. A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820

    Article  Google Scholar 

  15. O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476

    Article  Google Scholar 

  16. O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117

    Google Scholar 

  17. E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090

    Article  Google Scholar 

  18. T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transf., 1998, 120, p 328–334

    Article  Google Scholar 

  19. S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol. 8, 847, Verlag der Technischen Universite Graz, Austria, 2007

  20. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, 1997

    Google Scholar 

  21. H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, Vol 374, 2nd ed., Clarendon Press, Oxford, 1959

    Google Scholar 

  22. R.W. Farebrother, Linear-Least-Square Computations, Marcel Dekker, New York, 1988

    Google Scholar 

  23. Y.B. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974

    Google Scholar 

  24. S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, vol. 7, 1025, Verlag der Technischen Universite Graz, Austria, 2005, p 1025–1055

  25. S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. Perform., 2013, 22(8), p 2141

    Google Scholar 

  26. S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints, J. Mater. Eng. Perform., 2014, 23(6), p 2219–2232. doi:10.1007/s11665-014-1023-7

    Article  Google Scholar 

  27. S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936

    Article  Google Scholar 

  28. D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866

    Google Scholar 

  29. J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305

    Article  Google Scholar 

  30. R.O. Myhr and O. Grong, Dimensionless Maps for Heat Flow Analysis in Fusion Welding, Acta Metall. Mater., 1990, 38, p 449–460

    Article  Google Scholar 

  31. R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678

    Article  Google Scholar 

  32. V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, vol. 8, 847, Verlag der Technischen Universite Graz, Austria, 2007

  33. A.A. Deshpande, A. Short, W. Sun, D.G. McCartney, L. Xu, and T.H. Hyde, Finite-Element Analysis of Experimentally Identified Parametric Envelopes for Stable Keyhole Plasma Arc Welding of a Titanium Alloy, J. Strain Anal. Eng. Des., 2012, 47(5), p 266–275

    Article  Google Scholar 

  34. I.S. Leoveanu, G. Zgura, and D. Birsan, Modeling the Heat and Fluid Flow in the Welded Pool. Bull. Transsilv. Univ. Brasov, 2007, 3, p 363–368. ISSN: 1223-9631

  35. I.S. Leoveanu and G. Zgura, Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, Materials Science Forum, C. Lee, J.-B. Lee, D.-H. Park, and S-J. Na, Ed., vols. 580–582, University of Brasov, Transylvania, 2008, p 443–446

  36. V.V. Narayanareddy, N. Chandrasekhar, M. Vasudevan, S. Muthukumaran, and P. Vasantharaja, Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates, Metall. Mater. Trans. B, 2016, 47B, p 702–713

    Article  Google Scholar 

  37. I. Krivtsun, U. Reisgen, O. Semenov, and A. Zabirov, Modeling of Weld Pool Phenomena in Tungsten Inert Gas, CO2 Laser and Hybrid (TIG + CO2-Laser) Welding, J. Laser Appl., 2016, 28(2), p 1938

    Article  Google Scholar 

  38. R. PaMnani, M. Vasudevan, T. Jayamumar, P. Vasantharaja, and K.C. Ganesh, Numerical Simulation and Experimental Validation of Arc Welding of DMR-249A Steel, Def. Technol., 2016, doi:10.1016/j.dt.2016.01.012

    Google Scholar 

  39. A. Belitki, C. Marder, A. Huissel, and M.F. Zaeh, Automated Heat Source Calibration for the Numerical Simulation of Laser Beam Welded Components, Prod. Eng., 2016, 10, p 129–136. doi:10.1007/s11740-016-0664-9

  40. D. Venkatkumar and D. Ravindran, 3D Finite-Element Simulation of Temperature Distribution, Residual Stress and Distortion on 304 Stainless Steel Plates Using GTA Welding, J. Mech. Sci. Technol., 2016, 30(1), p 67–76

    Article  Google Scholar 

  41. G. Casalino and M. Mortello, Modeling and Experimental Analysis of Fiber Laser Offset Welding of Al–Ti Butt Joints, Int. J. Adv. Manuf. Technol., 2016, 83, p 89–98

    Article  Google Scholar 

  42. J. Ma, F. Kong, and R. Kovacevic, Finite-Element Thermal Analysis of Laser Welding of Galvanized High-Strength Steel in a Zero-Gap Lap Joint Configuration and its Experimental Verification, Mater. Des., 2012, 36, p 348–358

    Article  Google Scholar 

  43. R. Daneshkhan, M. Najafi, and H. Torabian, Numerical Simulation of Weld Pool Shape During Laser Beam Welding, Int. J. Appl. Basic Sci., 2012, 3(8), p 1624–1630

    Google Scholar 

  44. V.A. Karkhin, A. Pittner, C. Schwenk, and M. Rethmeier, Simulation of Inverse Heat Conduction Problems in Fusion Welding with Extended Analytical Heat Source Models, Front. Mater. Sci., 2011, 5(2), p 119–125

    Article  Google Scholar 

  45. R. Bracwell, The Fourier Transform and Its Applications, McGraw Hill, New York, 2000

    Google Scholar 

  46. R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th ed., Pearson, New York, 2012

    Google Scholar 

  47. J. K. Kristensen, Laser and Hybrid Laser-GMA Welding of Structural Steels, A Challenge to Research and Industry for Two Decades, Proceedings of the 8th International Conference on Trends in Welding Research, S.A. David, T. DebRoy, J.N. DuPont, T. Koseki, and H.B. Smartt, Ed., ASM International, p 645–641, 2009

  48. S.G. Lambrakos and A. Shabaev, Temperature Histories of Ti–6Al–4V Pulsed-Mode Laser Welds Calculated Using Multiple Constraints, Naval Research Laboratory Memorandum Report, Naval Research Laboratory, Washington, DC, NRL/MR/6390-15-9621, 2015

  49. E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, H. Cerjak and H.K.D.H. Bhadeshia, Ed., vol. 7, Verlag der Technischen Universite Graz, Austria, p 327–339, 2005

Download references

Acknowledgments

This work was supported by a Naval Research Laboratory (NRL) internal core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lambrakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrakos, S.G. Temperature Histories of Structural Steel Welds Calculated Using Solidification-Boundary Constraints. J. of Materi Eng and Perform 25, 4070–4080 (2016). https://doi.org/10.1007/s11665-016-2243-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2243-9

Keywords

Navigation