Skip to main content
Log in

A Limiting Current Oxygen Sensor Based on LSGM as a Solid Electrolyte and LSGMN (N = Fe, Co) as a Dense Diffusion Barrier

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The La0.8Sr0.2(Ga1−x Co x )0.8Mg0.2O3−δ (LSGMC x = 0.05, 0.1, 0.15, 0.2, 0.25) and La0.8Sr0.2(Ga1−x Fe x )0.8Mg0.2O3−δ (LSGMF x = 0.1, 0.2, 0.3) samples were prepared by solid-state reaction. The structure, conductivity, thermal expansion behavior, and chemical compatibility were studied by XRD, dilatometry, and four-terminal method. A limiting current oxygen sensor was prepared with La0.8Sr0.2Ga0.83Mg0.17O2.815 as a solid electrolyte and La0.8Sr0.2(Ga0.75Co0.25)0.8Mg0.2O3−δ as a dense diffusion barrier. The oxygen-sensitive characteristic was measured at different oxygen concentrations. The results show that the phase structure of samples is cubic, except La0.8Sr0.2(Ga0.75Co0.25)0.8Mg0.2O3−δ , which has a hexagonal structure. The change in activation energy for electrical conductivity and the increase in thermal expansion coefficient are confirmed to correlate with an increasing concentration of oxygen vacancies. The limiting current oxygen sensor exhibits a good limiting current platform and the limiting current depends linearly on the oxygen concentration: I L(mA) = 12.8519 + 2.2667 \(x_{{\text{O}_{\text{2}} }}\) (mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 3.31) at 750 °C, I L(mA) = 14.3222 + 3.5180 \(x_{{\text{O}_{\text{2}} }}\) (mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 4.16) at 800 °C, and I L(mA) = 15.2872 + 5.0269\(x_{{\text{O}_{\text{2}} }}\)(mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 4.12) at 850 °C. The sensor has the best sensitivity at 850 °C. As the oxygen concentration increases, the interface resistance of the sensor decreases at 850 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Garzon, I. Raistrick, E. Brosha, R. Houlton, and B.W. Chung, Dense Diffusion Barrier Limiting Current Oxygen Sensors, Sens. Actuators B Chem., 1998, 50, p 125–130

    Article  Google Scholar 

  2. Z.Y. Peng, M.L. Liu, and E. Balko, A New Type of Amperometric Oxygen Sensor Based on a Mixed-Conducting Composite Membrane, Sens. Actuators B Chem., 2001, 72, p 35–40

    Article  Google Scholar 

  3. H. Jiang, J.W. Jian, K. Chen, and Y.Y. Gu, Preparation and Properties of New Dense Diffusion Barrier Limiting Current Oxygen Sensor, J. Chin. Ceram. Soc., 2012, 40, p 1818–1822

    Google Scholar 

  4. B.G. He, T. Liu, J.Z. Guan, and C. Cheng, Preparation and Property of Limiting Current Oxygen Sensor with Sr0.9Y0.1CoO3−δ Dense Diffusion Barrier, J. Chin. Ceram. Soc. Chem., 2012, 42, p 268–274

    Google Scholar 

  5. T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite-Type Oxide as a New Oxide Ionic Conductor, J. Am. Chem. Soc., 1994, 116, p 3801–3803

    Article  Google Scholar 

  6. M. Feng and J.B. Goodenough, A Superior Oxide-Ion Electrolyte, Eur. J. Solid State Inorg. Chem., 1994, 31, p 663–672

    Google Scholar 

  7. T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Springer, New York, 2009

    Book  Google Scholar 

  8. I. Tadashi and S. Keiichi, Low Temperature Operation of Thin-Film Limiting-Current Type Oxygen Sensor Using Graded-Composition Layer Electrodes, Sens. Actuators B Chem., 2008, 129, p 874–880

    Article  Google Scholar 

  9. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, Nonstoichiometry of the Perovskite-Type Oxides La1−x Sr x CoO3−δ , J. Solid State Chem., 1989, 80, p 102

    Article  Google Scholar 

  10. H. Kishimoto, N. Sakai, T. Horita, K. Yamaji, M.E. Brito et al., Cation Transport Behavior in SOFC Cathode Materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with Perovskite Structure, Solid State Ionics, 2007, 178, p 1317–1325

    Article  Google Scholar 

  11. N. Trofimenko and H. Ullmann, Transition Metal Doped Lanthanum Gallates, Solid State Ionics, 1999, 118, p 215–227

    Article  Google Scholar 

  12. F.L. Chen and M.L. Liu, Study of Transition Metal Oxide Doped LaGaO3 as Electrode Materials for LSGM-Based Solid Oxide Fuel Cells, J. Solid State Electrochem., 1998, 3, p 7–14

    Article  Google Scholar 

  13. T. Liu, Y. Li, and J.B. Goodenough, Sr0.7Ho0.3CoO3–δ as a Potential Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2012, 199, p 161–164

    Article  Google Scholar 

  14. L.J. Van der Pauw, A Method of Measuring Specific Resistivity and Hall Effect Of Discs of Arbitrary Shape, Philips Res. Rep., 1958, 13, p 1–9

    Google Scholar 

  15. A. Esquirol, N.P. Brandon, J.A. Kilner, and M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs, J. Electrochem. Soc., 2004, 151, p A1847–A1855

    Article  Google Scholar 

  16. E. Djurado and M. Labeau, Second Phases in Doped Lanthanum Gallate Perovskites, J. Eur. Ceram. Soc., 1998, 18, p 1397–1404

    Article  Google Scholar 

  17. E.D. Politova, V.V. Aleksandrovskii, G.M. Kaleva, A.V. Mosunov, S.V. Suvorkin, S.V. Zaitsev, J.S. Sung, K.Y. Choo, and T.H. Kim, Mixed conducting Perovskite-Like Ceramics on the Base of Lanthanum Gallate, Solid State Ionics, 2006, 177, p 1779–1783

    Article  Google Scholar 

  18. E.D. Politova, S.Y. Stefanovich, A.K. Avetisov, V.V. Aleksandrovskii, T.Y. Glavatskih, N.V. Golubko, G.M. Kaleva, A.S. Mosunov, and N.U. Venskovskii, Processing, Structure, Microstructure, and Transport Properties of the Oxygen-Conducting Ceramics (La, Sr)(Ga, M)O y (M=Mg, Fe, Ni), J. Solid State Electrochem., 2004, 8, p 655–660

    Article  Google Scholar 

  19. V.V. Kharton, A.P. Viskup, A.A. Yaremchenko, R.T. Baker, G.C. Gharbage, G.C. Mather, F.M. Figueiredo, E.N. Naumovich, and F.M.B. Marques, Ionic Conductivity of La(Sr)Ga(Mg, M)O3−δ (M=Ti, Cr, Fe Co, Ni): Effects Of Transition Metal Dopants, Solid State Ionics, 2000, 132, p 119–130

    Article  Google Scholar 

  20. V.V. Kharton, A.P. Viskup, E.N. Naumovich, and N.M. Lapchuk, Mixed Electronic And Ionic Conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni) I. Oxygen Transport in Perovskites LaCoO3-LaGaO3, Solid State Ionics, 1997, 104, p 67–78

    Article  Google Scholar 

  21. T. Usui, A. Asada, M. Nakazawa, and H. Osanai, Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte, J. Electrochem. Soc., 1989, 136, p 534–542

    Article  Google Scholar 

  22. K. Saji, H. Kondo, H. Takahashi, T. Takeuchi, and I. Igarashi, Influence of H2O, CO2 and Various Combustible Gases on the Characteristics Of A Limiting Current-Type Oxygen Sensor, J. Appl. Electrochem., 1988, 18, p 757–762

    Article  Google Scholar 

  23. L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953

    Google Scholar 

  24. R. Ramamoorthy, P.K. Dutta, and S.A. Akbar, Oxygen Sensors: Materials, Methods, Designs, and Applications, J. Mater. Sci., 2003, 38, p 4271–4282

    Article  Google Scholar 

  25. E. Ivers-Tiffée, K.H. Härdtl, W. Menesklou, and J. Riegel, Principles of Solid State Oxygen Sensors for Lean Combustion Gas Control, Electrochim. Acta, 2001, 47, p 807–814

    Article  Google Scholar 

  26. J.X. Han, F. Zhou, J.X. Bao, X.J. Wang, and X.W. Song, A High Performance Limiting Current Oxygen Sensor with Ce0.8Sm0.2O1.9 Electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 Diffusion Barrier, Electrochim. Acta, 2013, 108, p 763–768

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51374055, 50904016) and the Fundamental Research Funds for the Central Universities of China (N130502003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Gao, X., He, BG. et al. A Limiting Current Oxygen Sensor Based on LSGM as a Solid Electrolyte and LSGMN (N = Fe, Co) as a Dense Diffusion Barrier. J. of Materi Eng and Perform 25, 2943–2950 (2016). https://doi.org/10.1007/s11665-016-2171-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2171-8

Keywords

Navigation