Skip to main content
Log in

Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Jia, X. Li, C. Du, Z. Liu, and J. Gao, Effect of the Carbon Dioxide Pressure on the Electrochemical Behavior of 3Cr Low Alloyed Steel at High Temperature, Mater. Chem. Phys., 2012, 136, p 973–979

    Article  Google Scholar 

  2. Z. Cui, S. Wu, S. Zhu, and X. Yang, Study on Corrosion Properties of Pipelines in Simulated Produced Water Saturated with Supercritical CO2, Appl. Surf. Sci., 2006, 252, p 2368–2374

    Article  Google Scholar 

  3. Y. Zhang, X. Pang, S. Qu, X. Li, and K. Gao, Discussion of the CO2 Corrosion Mechanism Between Low Partial Pressure and Supercritical Condition, Corros. Sci., 2012, 59, p 186–197

    Article  Google Scholar 

  4. K. George and S. Nešic, Investigation of Carbon Dioxide Corrosion of Mild Steel in the Presence of Acetic Acid-Part 1: Basic Mechanisms, Corrosion., 2007, 63, p 178–186

    Article  Google Scholar 

  5. L. Zhang, X. Li, C. Du, and Y. Cheng, Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in a CO2-Containing Solution, J. Mater. Eng. Perform., 2009, 18, p 319–323

    Article  Google Scholar 

  6. M. Kermani and A. Morshed, Carbon Dioxide Corrosion in Oil and Gas Production-A Compendium, Corrosion., 2003, 59, p 659–683

    Article  Google Scholar 

  7. G. Zhang and Y. Cheng, On the Fundamentals of Electrochemical Corrosion of X65 Steel in CO2-Containing Formation Water in the Presence of Acetic Acid in Petroleum Production, Corros. Sci., 2009, 51, p 87–94

    Article  Google Scholar 

  8. F.F. Eliyan, E.-S. Mahdi, and A. Alfantazi, Electrochemical Evaluation of the Corrosion Behaviour of API-X100 Pipeline Steel in Aerated Bicarbonate Solutions, Corros. Sci., 2012, 58, p 181–191

    Article  Google Scholar 

  9. J. Hernandez, A. Muñoz, and J. Genesca, Formation of Iron-Carbonate Scale-Layer and Corrosion Mechanism of API, X70 Pipeline Steel in Carbon Dioxide-Saturated 3% Sodium Chloride, Afinidad, 2012, 69, p 251–258

    Google Scholar 

  10. S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Corrosion of Alloy Steels Containing 2% Chromium in CO2 Environments, Corros. Sci., 2012, 63, p 246–258

    Article  Google Scholar 

  11. C. Avendano-Castro, R. Galvan-Martinez, A. Contreras, M. Salazar, R. Orozco-Cruz, E. Martinez et al., Corrosion Kinetics of Pipeline Carbon Steel Weld Immersed in Aqueous Solution Containing H2S, Corros. Eng. Sci. Technol., 2009, 44, p 149–156

    Article  Google Scholar 

  12. M. Alizadeh and S. Bordbar, The Influence of Microstructure on the Protective Properties of the Corrosion Product Layer Generated on the Welded API, X70 Steel in Chloride Solution, Corros. Sci., 2013, 70, p 170–179

    Article  Google Scholar 

  13. A.R. Shankar, G. Gopalakrishnan, V. Balusamy, and U.K. Mudali, Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium, J. Mater. Eng. Perform., 2009, 18, p 1116–1123

    Article  Google Scholar 

  14. Y. Han, H. Jing, and L. Xu, Welding Heat Input Effect on the Hydrogen Permeation in the X80 Steel Welded Joints, Mater. Chem. Phys., 2012, 132, p 216–222

    Article  Google Scholar 

  15. C. Du, X. Li, P. Liang, Z. Liu, G. Jia, and Y. Cheng, Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil, J. Mater. Eng. Perform., 2009, 18, p 216–220

    Article  Google Scholar 

  16. K. Deen, R. Ahmad, I. Khan, and Z. Farahat, Microstructural Study and Electrochemical Behavior of Low Alloy Steel Weldment, Mater. Des., 2010, 31, p 3051–3055

    Article  Google Scholar 

  17. H.-H. Huang, W.-T. Tsai, and J.-T. Lee, The Influences of Microstructure and Composition on the Electrochemical Behavior of A516 Steel Weldment, Corros. Sci., 1994, 36, p 1027–1038

    Article  Google Scholar 

  18. G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20, p 143–160

    Article  Google Scholar 

  19. J.S. Lee, S.H. Jeong, D.Y. Lim, J.O. Yun, and M.H. Kim, Effects of Welding Heat and Travel Speed on the Impact Property and Microstructure of FC Welds, Met. Mater. Int., 2010, 16, p 827–832

    Article  Google Scholar 

  20. K.-T. Park, S.W. Hwang, J.H. Ji, and C.H. Lee, Inclusions Nucleating Intragranular Polygonal Ferrite and Acicular Ferrite in Low Alloyed Carbon Manganese Steel Welds, Met. Mater. Int., 2011, 17, p 349–356

    Article  Google Scholar 

  21. L. Cui, X. Yang, D. Wang, X. Hou, J. Cao, and W. Xu, Friction Taper Plug Welding for S355 Steel in Underwater Wet Conditions: Welding Performance, Microstructures and Mechanical Properties, Mater. Sci. Eng. A, 2014, 611, p 15–28

    Article  Google Scholar 

  22. O. Grong and D.K. Matlock, Microstructural Development in Mild and Low-Alloy Steel Weld Metals, Int. Met. Rev., 1986, 31, p 27–48

    Article  Google Scholar 

  23. G. Zhang and Y. Cheng, Micro-electrochemical Characterization of Corrosion of Welded X70 Pipeline Steel in Near-Neutral pH Solution, Corros. Sci., 2009, 51, p 1714–1724

    Article  Google Scholar 

  24. H.R. Soleymani and M.E. Ismail, Comparing Corrosion Measurement Methods to Assess the Corrosion Activity of Laboratory OPC and HPC Concrete Specimens, Cem. Concr. Res., 2004, 34, p 2037–2044

    Article  Google Scholar 

  25. H. Al-Mazeedi and R. Cottis, A Practical Evaluation of Electrochemical Noise Parameters as Indicators of Corrosion Type, Electrochim. Acta, 2004, 49, p 2787–2793

    Article  Google Scholar 

  26. M. Pourbaix, Applications of Electrochemistry in Corrosion Science and in Practice, Corros. Sci., 1974, 14, p 25–82

    Article  Google Scholar 

  27. F. Farelas, M. Galicia, B. Brown, S. Nesic, and H. Castaneda, Evolution of Dissolution Processes at the Interface of Carbon Steel Corroding in a CO2 Environment Studied by EIS, Corros. Sci., 2010, 52, p 509–517

    Article  Google Scholar 

  28. S. Nešic and K.-L. Lee, A Mechanistic Model for Carbon Dioxide Corrosion of Mild Steel in the Presence of Protective Iron Carbonate Films-Part 3: Film Growth Model, Corrosion, 2003, 59, p 616–628

    Article  Google Scholar 

  29. J. Zhang, Z.L. Wang, Z.M. Wang, and X. Han, Chemical Analysis of the Initial Corrosion Layer on Pipeline Steels in Simulated CO2-Enhanced Oil Recovery Brines, Corros. Sci., 2012, 65, p 397–404

    Article  Google Scholar 

  30. M.S. Akram and V. Lomadze, On Some Basics of Linear Systems Theory, Syst. Control Lett., 2009, 58, p 83–90

    Article  Google Scholar 

  31. M. Urquidi-Macdonald, S. Real, and D.D. Macdonald, Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Impedance Data II. Transformations in the Complex Plane, J. Electrochem. Soc., 1986, 133, p 2018–2024

    Article  Google Scholar 

  32. M. Urquidi-Macdonald, S. Real, and D.D. Macdonald, Applications of Kramers—Kronig Transforms in the Analysis of Electrochemical Impedance Data—III. Stability and Linearity, Electrochim. Acta, 1990, 35, p 1559–1566

    Article  Google Scholar 

  33. H. Shin and F. Mansfeld, Concerning the Use of the Kramers-Kronig Transforms for the Validation of Impedance Data, Corros. Sci., 1988, 28, p 933–938

    Article  Google Scholar 

  34. Z. Feng, X. Cheng, C. Dong, L. Xu, and X. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and X-ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52, p 3646–3653

    Article  Google Scholar 

  35. G. Zhang and Y. Cheng, Corrosion of X65 Steel in CO2-Saturated Oilfield Formation Water in the Absence and Presence of Acetic Acid, Corros. Sci., 2009, 51, p 1589–1595

    Article  Google Scholar 

  36. J. Sun, G. Zhang, W. Liu, and M. Lu, The Formation Mechanism of Corrosion Scale and Electrochemical Characteristic of Low Alloy Steel in Carbon Dioxide-Saturated Solution, Corros. Sci., 2012, 57, p 131–138

    Article  Google Scholar 

  37. J.M. Bockris and D. Drazic, The Kinetics of Deposition and Dissolution of Iron: Effect of Alloying Impurities, Electrochim. Acta, 1962, 7, p 293–313

    Article  Google Scholar 

  38. S. Nešić, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines—A Review, Corros. Sci., 2007, 49, p 4308–4338

    Article  Google Scholar 

  39. Wu K-h, Zhu L-q, Li W-p, and Liu H-c, Effect of Ca2+ and Mg2+ on Corrosion and Scaling of Galvanized Steel Pipe in Simulated Geothermal Water, Corros. Sci., 2010, 52, p 2244–2249

    Article  Google Scholar 

  40. C.-N. Cao, On the Impedance Plane Displays for Irreversible Electrode Reactions Based on the Stability Conditions of the Steady-State—I. One State Variable Besides Electrode Potential, Electrochim. Acta, 1990, 35, p 831–836

    Article  Google Scholar 

  41. Y. Zhi-Ming and Y. Deng-Feng, A Theoretical Method to Calculate the Surface Free Energies of Crystals, Acta Phys. Sin., 2005, 54(8), p 3822–3830

    Google Scholar 

  42. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, 1960

    Google Scholar 

  43. J. Gray, B. El Dasher, and C. Orme, Competitive Effects of Metal Dissolution and Passivation Modulated by Surface Structure: An AFM and EBSD Study of the Corrosion of Alloy 22, Surf. Sci., 2006, 600, p 2488–2494

    Article  Google Scholar 

  44. B.R. Kumar, R. Singh, B. Mahato, P. De, N. Bandyopadhyay, and D. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI, 304L Stainless Steel, Mater. Charact., 2005, 54, p 141–147

    Article  Google Scholar 

  45. H. Park and J. Szpunar, The Role of Texture and Morphology in Optimizing the Corrosion Resistance of Zinc-Based Electrogalvanized Coatings, Corros. Sci., 1998, 40, p 525–545

    Article  Google Scholar 

  46. K. Ralston, N. Birbilis, and C. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scripta Mater., 2010, 63, p 1201–1204

    Article  Google Scholar 

  47. Van Hunnik E, Pots B, Hendriksen E. The Formation of Protective FeCO3 Corrosion Product Layers in CO2 Corrosion, Paper No. 6. CORROSION/96, NACE International, Houston, TX, 1996

  48. T. Minoda and H. Yoshida, Effect of Grain Boundary Characteristics on Intergranular Corrosion Resistance of 6061 Aluminum Alloy Extrusion, Metall. Mater. Trans. A., 2002, 33, p 2891–2898

    Article  Google Scholar 

  49. H. Tanaka, H. Esaki, K. Yamada, K. Shibue, and H. Yoshida, Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling, Mater. Trans., 2004, 45, p 69–74

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science Foundation of Tianjin, China (13JCYBJC18200), and the authors also wish to express their thanks to the Offshore Oil Engineering Co., Ltd., China for providing the A106B steel weld joint samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Jing, H., Han, Y. et al. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal. J. of Materi Eng and Perform 25, 565–576 (2016). https://doi.org/10.1007/s11665-015-1815-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1815-4

Keywords

Navigation